
Programming Perl

#!/usr/bin/perl −w
use strict;
 $_=’ev
 al("seek\040D
 ATA,0, 0;");foreach(1..2)
 {<DATA>;}my @camel1hump;my$camel;
 my$Camel ;while(<DATA>){$_=sprintf("%−6
9s",$_);my@dromedary 1=split(//);if(defined($
_=<DATA>)){@camel1hum p=split(//);}while(@dromeda
 ry1){my$camel1hump=0 ;my$CAMEL=3;if(defined($_=shif
 t(@dromedary1))&&/\S/){$camel1hump+=1<<$CAMEL;}
 $CAMEL−−;if(d efined($_=shift(@dromedary1))&&/\S/){
 $camel1hump+=1 <<$CAMEL;}$CAMEL−−;if(defined($_=shift(
 @camel1hump))&&/\S/){$camel1hump+=1<<$CAMEL;}$CAMEL−−;if(
 defined($_=shift(@camel1hump))&&/\S/){$camel1hump+=1<<$CAME
 L;;}$camel.=(split(//,"\040..m‘{/J\047\134}L^7FX"))[$camel1h
 ump];}$camel.="\n";}@camel1hump=split(/\n/,$camel);foreach(@
 camel1hump){chomp;$Camel=$_;tr/LJF7\173\175‘\047/\061\062\063
 45678/;tr/12345678/JL7F\175\173\047‘/;$_=reverse;print"$_\040
 $Camel\n";}foreach(@camel1hump){chomp;$Camel=$_;y/LJF7\173\17
 5‘\047/12345678/;tr/12345678/JL7F\175\173\047‘/;$_=reverse;p
 rint"\040$_$Camel\n";}#japh−Erudil’;;s;\s*;;g;;eval; eval
 ("seek\040DATA,0,0;");undef$/;$_=<DATA>;s$\s*$$g;();;s
 ;^.*_;;;map{eval"print\"$_\"";}/.{4}/g; __DATA__ \124
 \1 50\145\040\165\163\145\040\157\1 46\040\1 41\0
 40\143\141 \155\145\1 54\040\1 51\155\ 141
 \147\145\0 40\151\156 \040\141 \163\16 3\
 157\143\ 151\141\16 4\151\1 57\156
 \040\167 \151\164\1 50\040\ 120\1
 45\162\ 154\040\15 1\163\ 040\14
 1\040\1 64\162\1 41\144 \145\
 155\14 1\162\ 153\04 0\157
 \146\ 040\11 7\047\ 122\1
 45\15 1\154\1 54\171 \040
 \046\ 012\101\16 3\16
 3\15 7\143\15 1\14
 1\16 4\145\163 \054
 \040 \111\156\14 3\056
 \040\ 125\163\145\14 4\040\
 167\1 51\164\1 50\0 40\160\
 145\162 \155\151
 \163\163 \151\1
 57\156\056

Kirrily Robert
Paul Fenwick

Jacinta Richardson

Programming Perl
by Kirrily Robert, Paul Fenwick, and Jacinta Richardson

Copyright © 1999-2000 Netizen Pty Ltd
Copyright © 2000 Kirrily Robert
Copyright © 2001 Obsidian Consulting Group Pty Ltd
Copyright © 2001-2008 Paul Fenwick (pjf@perltraining.com.au)
Copyright © 2001-2008 Jacinta Richardson (jarich@perltraining.com.au)
Copyright © 2001-2008 Perl Training Australia

Open Publications License 1.0

Cover artwork Copyright (c) 2000 by Stephen B. Jenkins. Usedwith permission.

The use of a camel image with the topic of Perl is a trademark ofO’Reilly & Associates, Inc. Used with permission.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0or later (the latest

version is presently available at http://www.opencontent.org/openpub/).

Distribution of this work or derivative of this work in any standard (paper) book form is prohibited unless prior permission is obtained from

the copyright holder.

This document is a revised and edited copy of the Introduction to Perl and Intermediate Perl training notes originally created by Kirrily

Robert and Netizen Pty Ltd. These revisions were made by PaulFenwick and Jacinta Richardson.

Copies of the original training manuals can be found at http://sourceforge.net/projects/spork

This training manual is maintained by Perl Training Australia, and can be found at http://www.perltraining.com.au/notes.html

This is version 1.18 of Perl Training Australia’s "Programming Perl" training manual.

Table of Contents
1. About Perl Training Australia ...1

Training...1
Consulting...1
Contact us..1

2. Introduction ...3

Credits...3
Course outline...3

Day 1...3
Day 2...3
Day 3...3
Day 4...3

Assumed knowledge...4
Platform and version details..4
The course notes..4
Other materials..5

3. What is Perl...7

In this chapter..7
License..7
Perl’s name and history...7
Typical uses of Perl...7

Text processing..7
System administration tasks..7
CGI and web programming...8
Database interaction..8
Other Internet programming..8
Less typical uses of Perl..8

What is Perl like?..8
The Perl Philosophy..9

There’s more than one way to do it...9
A correct Perl program..9
Three virtues of a programmer..9

Laziness..9
Impatience..9
Hubris...10

Three more virtues...10
Share and enjoy!..10

Parts of Perl...10
The Perl interpreter..10
Manuals/Documentation..11
Perl Modules..11

Chapter summary..11

4. A brief guide to perldoc..13

Using perldoc..13
Exercise...13

Language features and tutorials..13
Looking up functions..13
Searching the FAQs...14
Looking up modules..14

Perl Training Australia (http://perltraining.com.au/) iii

5. Creating and running a Perl program..15

In this chapter..15
Logging into your account..15
Our first Perl program...15
Running a Perl program from the command line..15
Executing code..16

The "shebang" line for Unix..16
The "shebang" line for non-Unixes...17

Command line options and warnings..17
Lexical warnings..17

Comments...18
Block comments..18
__END__...18

Chapter summary..18

6. Perl variables...21

In this chapter..21
What is a variable?..21
Variable names..21
Variable scoping and the strict pragma...21

Arguments in favour of strictness..22
Arguments against strictness...22
Using the strict pragma (predeclaring variables)...22

Exercise..23
Using the diagnostics pragma..23

Exercise..23
Starting your Perl program..23

Scalars...24
Double and single quotes..25

Exercise...25
Special characters..25
Advanced variable interpolation..26
Exercises..26

Arrays..27
Initialising an array..27
Reading and changing array values...27
Array slices..28
Array interpolation..28
Counting backwards..28
Finding out the size of an array...29
Using qw// to populate arrays..29
Printing out the values in an array...30
A quick look at context..30
What’s the difference between a list and an array?...31
Exercises..31
Advanced exercises...32

Hashes...32
Initialising a hash...32
Reading hash values..33
Adding new hash elements..33
Changing hash values..33
Deleting hash values..33

iv Perl Training Australia (http://perltraining.com.au/)

Finding out the size of a hash..33
Other things about hashes..34
Exercises..34

Special variables..35
The special variable $_..35
@ARGV - a special array..36
%ENV - a special hash..36
Exercises..36

Chapter summary..36

7. Operators and functions...39

In this chapter..39
What are operators and functions?..39
Operators...39

Arithmetic operators..39
String operators...40
Exercises..40
Other operators..41

Functions...41
Types of arguments..42
Return values...43

More about context...43
Some easy functions..44

String manipulation...44
Finding the length of a string...44
Case conversion...44
chop() and chomp()..45
String substitutions with substr()...45
Exercises..46

Numeric functions...46
Type conversions...46
Manipulating lists and arrays...47

Stacks and queues..47
Ordering lists..47
Converting lists to strings, and vice versa..48

Exercises..48
Hash processing...49
Reading and writing files...49
Time...49
Exercises..49

Chapter summary..50

8. Conditional constructs..51

In this chapter..51
What is a conditional statement?..51
What is truth?..51
The if conditional construct..51

So what is aBLOCK?...52
Scope...53

Comparison operators...54
Exercises...55
Existence and definitiveness..55
Exercise...56

Perl Training Australia (http://perltraining.com.au/) v

Boolean logic operators..57
Logic operators and short circuiting...57
Boolean assignment..58
Loop conditional constructs..59

while loops...59
for and foreach...59
Exercises..60

Practical uses ofwhile loops: taking input from STDIN...61
Exercises..62

Named blocks..62
Breaking out or restarting loops..62
Practical exercise...63
Chapter summary..64

9. Subroutines..65

In this chapter..65
Introducing subroutines...65

What is a subroutine?..65
Why use subroutines?..65
Using subroutines in Perl...65

Calling a subroutine..66
Passing arguments to a subroutine..67

Passing in scalars...67
Passing in arrays and hashes..67

Returning values from a subroutine..69
Exercises...69
Chapter summary..70

10. Regular expressions..71

In this chapter..71
What are regular expressions?...71
Regular expression operators and functions..71

m/PATTERN/ - the match operator...71
s/PATTERN/REPLACEMENT/ - the substitution operator..72

Exercises..72
Binding operators..73
Easy modifiers...73

Meta characters...73
Some easy meta characters..73
Quantifiers...75
Exercises..75

Grouping techniques...76
Character classes...76

Exercises..77
Alternation...77
The concept of atoms...78

Exercises...78
Chapter summary..79

vi Perl Training Australia (http://perltraining.com.au/)

11. References and complex data structures..81

In this chapter..81
Assumed knowledge...81
Introduction to references...81
Uses for references..81

Creating complex data structures..81
Passing arrays and hashes to subroutines and functions..81
Object oriented Perl...82

Creating and dereferencing references..82
Exercises..83
Assigning through references..83

Passing multiple arrays/hashes as arguments..84
Anonymous data structures...85

Exercise...86
Complex data structures..86
Exercises...87
Disambiguation and curly braces..87
Data::Dumper..88

Exercises..90
Chapter summary..90

12. External Files and Packages..91

In this chapter..91
Splitting code between files..91

Require..91
Use strict and warnings...92
Example...92

Exercises...93
Introduction to packages...93
The scoping operator...94
Package variables and our...95
Exercises...95
Chapter summary..96

13. Modules..97

In this chapter..97
Module uses..97
What is a module?...97
The double-colon..98
Exercise...98
Where does Perl look for modules?..98
Finding installed modules...99

Exercise...99
Using CPAN modules..99

Writing modules..100
Use versus require...101
Warnings and strict..102
Exercise...102

Things to remember...102
Exporting and importing subroutines..102

@ISA...103
use base..103

An example..103

Perl Training Australia (http://perltraining.com.au/) vii

Exporting by default..104
An example..104
Importing symbols...105
Exercises..105
Exporting tags..105
Importing symbols through tags..105
Exercise...106

Chapter summary..106

14. Using Perl objects...107

In this chapter..107
Objects in brief..107
Using an object..107

Instantiating an object..108
Calling methods on an object..108
Destroying an object..108

Chapter summary..109

15. Advanced regular expressions...111

In this chapter..111
Assumed knowledge...111
Capturing matched strings to scalars..111
Extended regular expressions..112

Exercise...113
Advanced exercise...113

Greediness...114
Exercise...114

More meta characters..114
Working with multi-line strings..115

Exercise...117
Regexp modifiers for multi-line data...117

Back references...119
Special variables..119
Exercises..120
Advanced exercises...120

Chapter summary..120

16. File I/O...123

In this chapter..123
Angle brackets...123

The line input operator..123
Exercises..123

Opening a file for reading, writing or appending..123
Opening for reading...124

Failure..124
Opening for writing and appending...125
Funny filenames...125

Filehandles..126
Scalar filehandles...126
Exercises..127

Changing file contents...128
Secure temporary files...128
Looping over file contents...129

viii Perl Training Australia (http://perltraining.com.au/)

Exercises..129
Opening files for simultaneous read/write...129

The small print...130
Buffering..130

Opening pipes...131
Exercises..132

File locking...133
Handling binary data...134
Chapter summary..135

17. Directory interaction ..137

In this chapter..137
The globbing operator...137

Exercises..138
Finding information about files...138

Multiple file tests...139
Exercises..139

Changing the working directory..140
Recursing down directories...140

File::Find::Rule..141
Exercises..142

opendir and readdir...142
Scalar directory handles..143
Exercises..143

glob and readdir..143
rewinddir...144
Chapter summary..144

18. System interaction..145

In this chapter..145
system()...145

IPC::System::Simple...146
*nix exercise..147
MS Windows exercise...147

Using backticks...147
*nix exercises..148
MS Windows exercises..148

Platform dependency issues..149
Security considerations...149

Exercise...151
Safe.pm...152
Chapter summary..152

19. Practical exercises...153

About these exercises..153
Palindromes...153
Hangman...153

20. Conclusion...155

Where to now?..155
Further reading..155

Books...155
Online..155

Perl Training Australia (http://perltraining.com.au/) ix

A. Advanced Perl variables..157

In this chapter..157
Quoting withqq() andq() ...157

Exercises..158
Scalars in assignment..158
Arrays in assignment...159
Hash slices...160

Exercise...161
Hashes in assignment..161
Chapter summary..162

B. Named parameter passing and default arguments...163

In this chapter..163
Named parameter passing...163
Default arguments...164
Subroutine declaration and prototypes..164
Chapter summary..165

C. Complex data structures...167

Arrays of arrays...167
Creating and accessing a two-dimensional array..167
Adding to your two-dimensional array..167
Printing out your two-dimensional array...168

Hashes of arrays..168
Creating and accessing a hash of arrays..168
Adding to your hash of arrays...168
Printing out your hash of arrays..169

Arrays of hashes..169
Creating and accessing an array of hashes..169
Adding to your array of hashes...169
Printing out your array of hashes...170

Hashes of hashes...170
Creating and accessing a hash of hashes...170
Adding to your hash of hashes..171
Printing out your hash of hashes...171

More complex structures...171

D. More functions ...173

The grep() function...173
Exercises..173

The map() function..173
Exercises..174

E. Unix cheat sheet..175

F. Editor cheat sheet...177

vi (or vim) ...177
Running...177
Using..177
Exiting ...177
Gotchas..177
Help...178

nano (pico clone)...178
Running...178
Using..178

x Perl Training Australia (http://perltraining.com.au/)

Exiting ...178
Gotchas..178
Help...178

G. ASCII Pronunciation Guide ...179

Colophon..181

Perl Training Australia (http://perltraining.com.au/) xi

xii Perl Training Australia (http://perltraining.com.au/)

List of Tables
1-1. Perl Training Australia’s contact details..1
4-1. Getting around in perldoc..13
6-1. Variable punctuation..21
7-1. Arithmetic operators..39
7-2. String operators...40
7-3. Context-sensitive functions...43
8-1. Numerical comparison operators...54
8-2. String comparison operators..54
8-3. Boolean logic operators...57
10-1. Binding operators..73
10-2. Regexp modifiers...73
10-3. Regular expression meta characters..74
10-4. Regular expression quantifiers..75
15-1. More meta characters..115
15-2. Effects of single and multi-line options...118
17-1. File test operators..138
17-2. Differences between glob and readdir...143
E-1. Simple Unix commands..175
F-1. Layout of editor cheat sheets...177
G-1. ASCII Pronunciation Guide...179

Perl Training Australia (http://perltraining.com.au/) xiii

xiv Perl Training Australia (http://perltraining.com.au/)

Chapter 1. About Perl Training Australia

Training
Perl Training Australia (http://www.perltraining.com.au) offers quality training in all aspects of the
Perl programming language. We operate throughout Australia and the Asia-Pacific region. Our
trainers are active Perl developers who take a personal interest in Perl’s growth and improvement.
Our trainers can regularly be found frequenting online communities such as Perl Monks
(http://www.perlmonks.org/) and answering questions andproviding feedback for Perl users of all
experience levels.

Our primary trainer, Paul Fenwick, is a leading Perl expert in Australia and believes in making Perl a
fun language to learn and use. Paul Fenwick has been working with Perl for over 10 years, and is an
active developer who has written articles forThe Perl Journaland other publications.

Doctor Damian Conway, who provides many of our advanced courses, is one of the three core Perl 6
language designers, and is one of the leading Perl experts worldwide. Damian was the winner of the
1998, 1999, and 2000 Larry Wall Awards for Best Practical Utility. He is a member of the technical
committee for OSCON, a columnist for The Perl Journal, and author of the book "Object Oriented
Perl".

Consulting
In addition to our training courses, Perl Training Australia also offers a variety of consulting
services. We cover all stages of the software development life cycle, from requirements analysis to
testing and maintenance.

Our expert consultants are both flexible and reliable, and are available to help meet your needs,
however large or small. Our expertise ranges beyond that of just Perl, and includes Unix system
administration, security auditing, database design, and of course software development.

Contact us
If you have any project development needs or wish to learn to use Perl to take advantage of its quick
development time, fast performance and amazing versatility; don’t hesitate to contact us.

Table 1-1. Perl Training Australia’s contact details

Phone: 03 9354 6001

Fax: 03 9354 2681

Email: contact@perltraining.com.au

Webpage: http://www.perltraining.com.au/

Address: 104 Elizabeth Street, Coburg VIC, 3058

Perl Training Australia (http://perltraining.com.au/) 1

Chapter 1. About Perl Training Australia

2 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. Introduction
Welcome to Perl Training Australia’sProgramming Perltraining course. This is a four-day module
in which you will learn how to program the Perl programming language.

Credits
This course is based upon the Introduction to Perl and Intermediate Perl training modules written by
Kirrily Robert of Netizen Pty Ltd.

Course outline

Day 1

• What is Perl?

• Introduction to perldoc

• Creating and running a Perl program

• Variable types

• Operators and Functions

Day 2

• Conditional constructs

• Subroutines

• Regular expressions

Day 3

• References and complex data structures

• Introduction to modules and packages

• Writing packages and modules

• Using Perl objects

Day 4

• Advanced regular expressions

Perl Training Australia (http://perltraining.com.au/) 3

Chapter 2. Introduction

• File I/O

• System interaction

• Bonus material

Assumed knowledge
This training module assumes the following prior knowledgeand skills:

• You have programmed in least one other language and you:

• Understand the concept of variables, including arrays and pointers/references

• Understand conditional and looping constructs

• Understand the use of user defined functions

Platform and version details
Perl is a cross-platform computer language which runs successfully on approximately 30 different
operating systems. However, as each operating system is different this does occasionally impact on
the code you write. Most of what you will learn will work equally well on all operating systems;
your instructor will inform you throughout the course of anyareas which differ.

At the time of writing, the most recent stable release of Perlis 5.10.0, however older versions of Perl
(particularly 5.6.1 and 5.005) are still common. Your instructor will inform you of any features
which may not exist in earlier versions.

The course notes
These course notes contain material which will guide you through the topics listed above, as well as
appendices containing other useful information.

The following typographical conventions are used in these notes:

System commands appear inthis typeface

Literal text which you should type in to the command line or editor appears asmonospaced font .

Keystrokes which you should type appear like this:ENTER. Combinations of keys appear like this:
CTRL -D

Program listings and other literal listings of what appears on the
screen appear in a monospaced font like this.

Parts of commands or other literal text which should be replaced by your own specific values appear
like this

Notes and tips appear offset from the text like this.

4 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. Introduction

Notes which are marked "Advanced" are for those who are racing ahead or who already have
some knowledge of the topic at hand. The information contained in these notes is not essential
to your understanding of the topic, but may be of interest to those who want to extend their
knowledge.

Notes marked with "Readme" are pointers to more information which can be found in your
textbook or in online documentation such as manual pages or websites.

Notes marked "Caution" contain details of unexpected behaviour or traps for the unwary.

Other materials
In addition to these notes, it is highly recommend that you obtain a copy of Programming Perl (2nd
or 3rd edition) by Larry Wall, et al., more commonly referredto as "the Camel book". While these
notes have been developed to be useful in their own right, theCamel book covers an extensive range
of topics not covered in this course, and discusses the concepts covered in these notes in much more
detail. The Camel Book is considered to be the definitive reference book for the Perl programming
language.

The page references in these notes refer to the3rd editionof the Camel book, unless otherwise
stated. References to the 2nd edition will be shown in parentheses.

Perl Training Australia (http://perltraining.com.au/) 5

Chapter 2. Introduction

6 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. What is Perl

In this chapter...
This section describes Perl and its uses. You will learn about this history of Perl, the main areas in
which it is commonly used, and a little about the Perl community and philosophy.

License
Perl is distributed under two licenses. These are the Artistic License and the GPL. You may choose
which license you are using Perl under. For the text of these licenses readperldoc perlartistic and
perldoc perlgpl.

Many of the modules that you can download from CPAN for Perl are also distributed under these
same two licenses.

Perl’s name and history
Perl was originally written by Larry Wall as a tool to assist him with a re-write of the then popular
"rn" news-reader. Larry found himself desiring a language which tied together the best features of
diverse languages such as C, shell, awk and sed, and wrote Perl to fill this need. Perl was a huge
success with system administrators, and so development of the language flourished. Due to Perl’s
popularity, Larry never finished the rewrite of rn.

Perl allegedly stands for "Practical Extraction and Reporting Language", although some people
swear it stands for "Pathologically Eclectic Rubbish Lister". In fact, Perl is not an acronym; it’s a
shortened version of the program’s original name, "Pearl".According to Larry Wall, the name was
shortened because all other good Unix commands were four letters long, so shortening Perl’s name
would make it more popular.

When we talk about the language it’s spelled with a capital "P" and lowercase "erl", not all capitals
as is sometimes seen (especially in job advertisements posted by contract agencies). When you’re
talking about the Perl interpreter, it’s spelled in all lower case:perl.

Perl has been described as everything from "line noise" to "the Swiss-army chain-saw of
programming languages". The latter of these nicknames gives some idea of how programmers see
Perl - as a very powerful tool that does just about everything.

Typical uses of Perl

Text processing
Perl’s original main use was text processing. It is exceedingly powerful in this regard, and can be
used to manipulate textual data, reports, email, news articles, log files, or just about any kind of text,
with great ease.

Perl Training Australia (http://perltraining.com.au/) 7

Chapter 3. What is Perl

System administration tasks
System administration is made easy with Perl. It’s particularly useful for tying together lots of
smaller scripts, working with file systems, networking, andso on.

CGI and web programming
Since HTML is just text with built-in formatting, Perl can beused to process and generate HTML.
For many years Perl was the de facto language for web development, and is still very heavily used
today. There are many freely available tools and scripts to assist with web development in Perl.

Database interaction
Perl’s DBI module makes interacting with all kinds of databases --- from Oracle down to
comma-separated variable files --- easy and portable. Perl is increasingly being used to write large
database applications, especially those which provide a database backend to a website.

Other Internet programming
Perl modules are available for just about every kind of Internet programming, from Mail and News
clients, interfaces to IRC and ICQ, right down to lower levelsocket programming.

Less typical uses of Perl
Perl is used in some unusual places as well. The Human Genome Project relies on Perl for DNA
sequencing, NASA use Perl for satellite control, PDL (Perl Data Language, pronounced "piddle")
makes number-crunching easy, and there is even a Perl ObjectEnvironment (POE) which is used for
event-driven state machines.

What is Perl like?
The following (somewhat paraphrased) article, entitled "What is Perl", comes from The Perl Journal
(http://www.tpj.com/) (Used with permission.)

Perl is a general purpose programming languagedeveloped in 1987 by Larry Wall. It has become the
language of choice for WWW development, text processing, Internet services, mail filtering, graphical
programming, and every other task requiring portable and easily-developed solutions.

Perl is interpreted.This means that as soon as you write your program, you can run it -- there’s no
mandatory compilation phase. The same Perl program can run on Unix, Windows, NT, MacOS, DOS,
OS/2, VMS and the Amiga.

Perl is collaborative.The CPAN software archive contains free utilities written by the Perl community, so
you save time.

Perl is free.Unlike most other languages, Perl is not proprietary. The source code and compiler are free,
and will always be free.

Perl is fast.The Perl interpreter is written in C, and more than a decade ofoptimisations have resulted in a
fast executable.

8 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. What is Perl

Perl is complete.The best support for regular expressions in any language, internal support for hash tables,
a built-in debugger, facilities for report generation, networking functions, utilities for CGI scripts, database
interfaces, arbitrary-precision arithmetic --- are all bundled with Perl.

Perl is secure.Perl can perform "taint checking" to prevent security breaches. You can also run a program
in a "safe" compartment to avoid the risks inherent in executing unknown code.

Perl is open for business.Thousands of corporations rely on Perl for their information processing needs.

Perl is simple to learn.Perl makes easy things easy and hard things possible. Perl handles tedious tasks for
you, such as memory allocation and garbage collection.

Perl is concise.Many programs that would take hundreds or thousands of linesin other programming
languages can be expressed in a page of Perl.

Perl is object oriented.Inheritance, polymorphism, and encapsulation are all provided by Perl’s object
oriented capabilities.

Perl is flexible.The Perl motto is "there’s more than one way to do it." The language doesn’t force a
particular style of programming on you. Write what comes naturally.

Perl is fun.Programming is meant to be fun, not only in the satisfaction of seeing our well-tuned programs
do our bidding, but in the literary act of creative writing that yields those programs. With Perl, the journey
is as enjoyable as the destination.

The Perl Philosophy

There’s more than one way to do it
The Perl motto is "there’s more than one way to do it" --- oftenabbreviated TMTOWTDI. What this
means is that for any problem, there will be multiple ways to approach it using Perl. Some will be
quicker, more elegant, or more readable than others, but that doesn’t make the other solutionswrong.

A correct Perl program...
"... is one that does the job before your boss fires you." That’s in the preface to the Camel book,
which is highly recommended reading.

Perl makes it easy to perform many tasks, and was built with programmer convenience in mind. It is
possible to develop Perl programs very quickly, although the resulting code is not always beautiful.
This course aims to teach not only the Perl language, but alsogood programming practice in Perl as
well.

Three virtues of a programmer
The Camel book contains the following entries in its glossary:

Laziness

The quality that makes you go to great effort to reduce overall energy expenditure. It makes you
write labour-saving programs that other people will find useful, and document what you wrote so
you don’t have to answer so many questions about it. Hence, the first great virtue of a programmer.

Perl Training Australia (http://perltraining.com.au/) 9

Chapter 3. What is Perl

Impatience

The anger you feel when the computer is being lazy. This makesyou write programs that don’t just
react to your needs, but actually anticipate them. Or at least pretend to. Hence, the second great
virtue of a programmer.

Hubris

Excessive pride, the sort of thing Zeus zaps you for. Also thequality that makes you write (and
maintain) programs that other people won’t want to say bad things about. Hence, the third great
virtue of a programmer.

Three more virtues
In his "State of the Onion" keynote speech at The Perl Conference 2.0 in 1998, Larry Wall described
another three virtues, which are the virtues of a community of programmers. These are:

• Diligence

• Patience

• Humility

You may notice that these are the opposites of the first three virtues. However, they are equally
necessary for Perl programmers who wish to work together, whether on a software project for their
company or on an Open Source project with many contributors around the world.

Share and enjoy!
Perl is Open Source software, and most of the modules and extensions for Perl are also released
under Open Source licenses of various kinds (Perl itself is released under dual licenses, the GNU
General Public License and the Artistic License, copies of which are distributed with the software).

The culture of Perl is fairly open and sharing, and thousandsof volunteers worldwide have
contributed to the current wealth of software and knowledgeavailable to us. If you have time, you
should try and give back some of what you’ve received from thePerl community. Contribute a
module to CPAN, help a new Perl programmer to debug her programs, or write about Perl and how
it’s helped you. Even buying books written by the Perl gurus (like many of the O’Reilly Perl books),
or subscribing to publications such as The Perl Journal helps give them the financial means to keep
supporting Perl.

Parts of Perl

The Perl interpreter
The main part of Perl is the interpreter. The interpreter is available for Unix, Windows, and many
other platforms. The current version of Perl is 5.10.0, which is available from the Perl website
(http://www.perl.com/). Perl is generally available through most package managers in *nix systems.

10 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. What is Perl

Windows users may find ActiveState’s Active Perl (http://www.activestate.com/Products/activeperl/)
and Strawberry Perl (http://strawberryperl.com/) to be good options.

Perl 6, a serious revision of the language, is under active development. Perl 6 will share many
features in common with Perl 5, but will also provide a great many improvements and features.

Manuals/Documentation
Along with the interpreter come the manuals for Perl. These are accessed via theperldoc command
or, on Unix systems, also via theman command. More than 30 manual pages come with the current
version of Perl. These can be found by typingman perl (or perldoc perl on non-Unix systems). The
Perl FAQs (Frequently Asked Questions files) are available in perldoc format, and can be accessed
by typingperldoc perlfaq.

Perl Modules
Perl also comes with a collection of modules. These are Perl libraries which carry out certain
common tasks, and can be included as common libraries in any Perl script. Less commonly used
modules aren’t included with the distribution, but can be downloaded from CPAN
(http://www.cpan.org) and installed separately.

Chapter summary

• Common uses of Perl include

• text processing

• system administration

• CGI and web programming

• other Internet programming

• Perl is a general purpose programming language, distributed for free via the Perl website
(http://www.perl.com/) and mirror sites.

• Perl includes excellent support for regular expressions, object oriented programming, and other
features.

• Perl allows a great degree of programmer flexibility - "There’s more than one way to do it".

• The three virtues of a programmer are Laziness, Impatience and Hubris. Perl will help you foster
these virtues.

• The three virtues of a programmer in a group environment are Diligence, Patience, and Humility.

• Perl is a collaborative language - everyone is free to contribute to the Perl software and the Perl
community.

• Parts of Perl include: the Perl interpreter, documentationin several formats and library modules.

Perl Training Australia (http://perltraining.com.au/) 11

Chapter 3. What is Perl

12 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. A brief guide to perldoc
Depending upon your operating system, the way in which you access Perl’s on-line documentation
may differ, but the information that is available should be the same on all systems.

This chapter discusses Perl’s on-line help on Unix flavouredoperating systems. On such systems,
most of Perl’s help files are also available as man pages. However,man is not always good at finding
documentation embedded inside modules and programs, whereasperldoc is very good at it.

Using perldoc

Table 4-1. Getting around in perldoc

Action Keystroke

Page down SPACE

Page up b

Quit q

Exercise
On the command line, typeperldoc perl. You will find yourself in the Perl documentation pages.

Language features and tutorials
Perl comes with a large amount of documentation detailing the language, as well as some tutorials to
help you learn. Learning the entire language from these helpfiles is not easy (that’s why you have
these notes), but they’re a very useful reference material.

perldoc perl will provide you with a long list of help topics, andperldoc perltoc will provide you
with the same list but with subsections, so you can easily search for what you’re after.

You might notice that all the help files start withperl , such asperlfunc or perlfaq . This is so that
the Unix man pages can have the same names as the perldoc pages. Try man perlfunc and you’ll get
the same information asperldoc perlfunc.

Feel free to experiment and read any pages that interest you.If you’re working on an unfamiliar
machine, you might findperldoc perllocal handy to see which extra modules have been installed.
perldoc perlmodlib lists Perl’s standard modules.

Looking up functions
If you’re like most people, you’ll occasionally forget the calling syntax or exact details of a
particular function. Rather than having to flick through a weighty book, or read through all of
perldoc perlfunc, there is an easier way to obtain the information that you’reafter.perldoc -f
function lists all the information available about the desired function. Try

Perl Training Australia (http://perltraining.com.au/) 13

Chapter 4. A brief guide to perldoc

• perldoc -f split

• perldoc -f grep

• perldoc -f map

This is probably the most common use ofperldoc.

Searching the FAQs
Perl comes with several frequently asked questions (FAQ) files. These cover everything from general
questions about Perl to using Perl for system interaction and networking. You can access these via
perldoc:perldoc perlfaq, perldoc perlfaq1, perldoc perlfaq2 and so on up toperldoc perlfaq9.
Alternately you can search these with theq swtich:perldoc -q <keyword>. For example:

% perldoc -q round

Found in /usr/share/perl/5.8/pod/perlfaq4.pod
Does Perl have a round() function? What about ceil() and
floor()? Trig functions?

Remember that int() merely truncates toward 0. For rounding
to a certain number of digits, sprintf() or printf() is
usually the easiest route.

[...]

Theq switch searches for your keyword in the text of the question,not of the answer. Where there
are multiple matching questions, they will be displayed sequentially.

Looking up modules
While using and writing modules are not covered in this course, as your experience with Perl grows
you will find yourself dealing with modules more often. You can find information about any installed
module simply by usingperldoc module. For example,perldoc CGI would tell you more about
Perl’sCGI module, which is very useful in developing interactive web-sites.

This also works for pragmas, of which we’ll cover a few today.Try perldoc strict for more
information on thestrict pragma.

To locate the install path of a particular module useperldoc -l module_name. To view the source of a
module useperldoc -m module_name. To find all the modules installed on your system readperldoc
-q installed.

14 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Creating and running a Perl
program

In this chapter...
In this chapter we will be creating a very simple "Hello world" program in Perl and exploring some
of the basic syntax of the Perl programming language.

Logging into your account
However you’re doing this course, you will have access to a machine on which to perform the
practical exercises. Your instructor will tell you the options available to you.

You should find that you have anexercises/ directory available in your account or on your desktop.
This directory contains example scripts and answers that are referred to throughout these notes.

Our first Perl program
We’re about to create our first, simple Perl script: a "hello world" program. There are a couple of
things you should know in advance:

• Perl programs (or scripts --- the words are interchangeable) consist of a series of statements

• When you run the program, each statement is executed in turn,from the top of your script to the
bottom. (There are two special cases where this doesn’t occur, one of which --- subroutine
declarations --- we’ll be looking at tomorrow)

• Each statement ends in a semi-colon

• Statements can flow over several lines

• Whitespace (spaces, tabs and newlines) is ignored in most places in a Perl script.

Now, just for practice, open a file calledhello.pl in your editor. Type in the following one-line Perl
program:

print "Hello world!\n";

This one-line program calls theprint function with a single parameter, thestring literal "Hello

world!" followed by a newline character.

Save it and exit.

Incidentally, Appendix G contains a guide to pronouncing ASCII characters, especially punctuation.
Perl makes use of many punctuation symbols, so this will helpyou translate Perl into spoken
language, for ease of communication with other programmers.

Perl Training Australia (http://perltraining.com.au/)
15

Chapter 5. Creating and running a Perl program

Running a Perl program from the command line
We can run the program from the command line by typing in:

% perl hello.pl

You should see this output:

Hello world!

This program should, of course, be entirely self-explanatory. The only thing you really need to note
is the\n ("backslash N") which denotes a new line. If you are familiarwith the C programming
language, you’ll be pleased to know that Perl uses the same notation to represent characters such as
newlines, tabs, and bells as does C.

Executing code
Writing perl in front of all of our programs to execute them can be a bit of a pain. What if we want
to be able to run our program from the command line, without having to always type that in?

Well... it depends on the operating system.

Various operating systems have different ways of determining how to react to different files. For
example, Microsoft Windows uses file extensions while the various Unixes are completely indifferent
to all parts of the filename. Some operating systems use properties you can set individually.

This can lead to some confusion when trying to write code to becross-platform. Where Microsoft
Windows will recognise that all files with a.pl extension should be passed to the Perl interpreter,
how can we ensure that we’ve done everything for the other platforms as well?

The "shebang" line for Unix
Unix and Unix-like operating systems do not automatically realise that a Perl script (which is just a
text file after all) should be executable. As a result, we haveask the operating system to change the
file’s permissions to allow execution:

% chmod +x hello.pl

Once the file is executable we also need to tell Unix how to execute the program. This allows the
operating system to have many executable programs written in different scripting languages.

We tell the operating system to use the Perl interpreter by adding a "shebang" line (called such
because the# is a "hash" sign, and the! is referred to as a "bang", hence "hashbang" or "shebang").

#!/usr/bin/perl

Of course, if the Perl interpreter were somewhere else on oursystem, we’d have to change the
shebang line to reflect that.

This allows us to run our scripts just by typing:

% ./hello.pl

16 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Creating and running a Perl program

For security purposes, many Unix and Unix-like systems do not include your current directory in
those which are searched for commands, by default. This means that if you try to invoke your
script by typing:

% hello.pl # this doesn’t work

you’ll get the error: bash: hello.pl: command not found . This is why we prepend our command
with the current working directory (./hello.pl).

The "shebang" line for non-Unixes
It’s always considered a good idea forall Perl programs to contain a shebang line. This is helpful
because it allows us to include command line options, which we’ll cover shortly.

If your program will only ever be run on your single operatingsystem then you can use the line:

#!perl

However it is considered good practice to use the traditional:

#!/usr/bin/perl

as this assists with cross-platform portability.

Command line options and warnings

A full explanation of command line options can be found in the Camel book on pages 486 to
505 (330 to 337, 2nd Ed) or by typing perldoc perlrun .

Perl has a number of command line options, which you can specify on the command line by typing
perl options hello.pl or which you can include in the shebang line. The most commonly used
option is-w to turn on warnings:

#!/usr/bin/perl -w

It’s always a good idea to turn on warnings while you’re developing code, and often once your code
has gone into production, too.

Lexical warnings
In Perl versions 5.6 and above you can use Perl’swarnings pragma rather than the command line
switch if you prefer. This also gives you the option to specify which warnings you wish to receive,
and to upgrade those warnings to exceptions if necessary.

#!/usr/bin/perl

use warnings;

Perl Training Australia (http://perltraining.com.au/) 17

Chapter 5. Creating and running a Perl program

To learn more about this pragma read perldoc perllexwarn and perldoc warnings .

Comments
Comments in Perl start with a hash sign (#), either on a line on their own or after a statement.
Anything after a hash is a comment up to the end of the line.

#!/usr/bin/perl -w
This is a hello world program
print "Hello world!\n"; # print the message

Block comments
To comment a block of text (or code) you can use Perl’s Plain Old Documentation tags (POD). You
can read more about POD inperldoc perlpod.

=begin comment

This content is commented out.
It may span many lines.

print "This statement won’t be executed by Perl\n";

=end comment

=cut

print "Hello world!\n"; # print the message

__END__
You can signal to Perl the end of your program by using the special __END__ tag. Anything below
__END__ will be ignored by Perl. This is particularly useful if you wish to include a large amount of
documentation, or quickly comment out a large amount of codein one step.

print "Hello world!\n"; # print the message

__END__
All text and code from here downwards will be ignored by Perl.
print "This statement won’t be executed by Perl\n";

Chapter summary
Here’s what you know about Perl’s operation and syntax so far:

• Perl programs typically start with a "shebang" line.

• statements (generally) end in semicolons.

18 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Creating and running a Perl program

• statements may span multiple lines; it’s only the semicolonthat ends a statement.

• comments are indicated by a hash (#) sign. Anything after a hash sign on a line is a comment.

• \n is used to indicate a new line.

• whitespace is ignored almost everywhere.

• command line arguments to Perl can be indicated on the shebang line.

• the-w command line argument turns on warnings.

Perl Training Australia (http://perltraining.com.au/) 19

Chapter 5. Creating and running a Perl program

20 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

In this chapter...
In this chapter we will explore Perl’s three main variable types --- scalars, arrays, and hashes --- and
learn to assign values to them, retrieve the values stored inthem, and manipulate them in certain
ways. More advanced information about Perl’s variables andassignment to them can be found in
Appendix A.

What is a variable?
A variable is a place where we can store data. Think of it like apigeonhole with a name on it
indicating what data is stored in it.

The Perl language is very much like human languages in many ways, so you can think of variables as
being the "nouns" of Perl. For instance, you might have a variable called "total" or "employee".

Variable names
Variable names in Perl may contain alphanumeric charactersin upper or lower case, and
underscores. A variable name may not start with a number, as that means something special, which
we’ll encounter later. Likewise, variables that start withanything non-alphanumeric are also special,
and we’ll discuss that later, too.

It’s standard Perl style to name variables in lower case, with underscores separating words in the
name. For instance,employee_number . Upper case is usually used for constants, for instance
LIGHT_SPEEDor PI . Following these conventions will help make your Perl more maintainable and
more easily understood by others.

Lastly, variable names all start with a punctuation sign (correctly known as asigil) depending on
what sort of variable they are:

Table 6-1. Variable punctuation

Variable type Starts with Pronounced

Scalar $ dollar

Array @ at

Hash % percent

(Don’t worry if those variable type names don’t mean anything to you. We’re about to cover them.)

Variable scoping and the strict pragma
Many programming languages require you to "pre-declare" variables --- that is, say that you’re going
to use them before you do so. Variables can either be declaredas global (that is, they can be used
anywhere in the program) or local (they can only be used in thesame part of the program in which

Perl Training Australia (http://perltraining.com.au/)
21

Chapter 6. Perl variables

they were declared).

In Perl, it is not necessary to declare your variables beforeyou begin. You can summon a variable
into existence simply by using it, and it will be globally available to any routine in your program. If
you’re used to programming in C or any of a number of other languages, this may seem odd and
even dangerous to you. This is indeed the case. That’s why youwant to use thestrict pragma.

Arguments in favour of strictness

• avoids accidental creation of unwanted variables when you make a typing error

• avoids scoping problems, for instance when a subroutine uses a variable with the same name as a
global variable

• allows for warnings if values are assigned to variables and never used (which is great for detecting
typographical errors)

Arguments against strictness

• takes a while to get used to, and may slow down development until it becomes habitual

• enforces a structured style of coding which isn’t nearly as much fun

Of course, sometimes a little bit of structure is a good thing, like when you want the trains to run on
time. Because of this, Perl lets you turn strictness on if youwant it, using something called thestrict
pragma. A pragma, in Perl-speak, is a set of rules for how your code isto be dealt with.

Some documentation about the strict pragma can be found by reading perldoc strict . Its
effects are discussed on pages 858-860 (page 500 2nd Ed) of the Camel book.

Using the strict pragma (predeclaring variables)
Using strict and warnings will catch the vast majority of common programming errors, and also
enforces a more clean and understandable programming style. Following these conventions is also
very important if you wish to seek help from other more experienced programmers.

Here’s how the strict pragma is invoked:

#!/usr/bin/perl -w
use strict;

That typically goes at the top of your program, just under your shebang line and introductory
comments.

Once we use the strict pragma, we have to explicitly declare new variables usingmy. For example:

my $scalar;
my @array;
my %hash;

my $number = 3;

22 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

These variable declarations can occur anywhere in the program and it is good practice to declare
your variables just before you use them. We’ll come back to this in more detail when we talk about
blocks and subroutines.

There’s more about use of my on pages 130-133 (page 189, 2nd Ed) of the Camel book.

Exercise

Try running the programexercises/strictfail.pl and see what happens. What needs to be done
to fix it? Try it and see if it works. By the way, get used to this error message - it’s one of the most
common Perl programming mistakes, though it’s easily fixed.

An answer for the above can be found atexercises/answers/strictfail.pl .

Using the diagnostics pragma
Another pragma that you may find useful is the diagnostics pragma. This translates the normally
terse diagnostics emitted from the perl compiler and the perl interpreter into much more useful ones.

To use this pragma, all you have to do is type:

use diagnostics;

at the start of your code.

The diagnostics pragma makes your warnings much more verbose, and it slows the start-up time of
your script considerably. You should remove it before putting your code into production.

All the extended diagnostics can also be found in perldoc perldiag , or in pages 916-978 of
the camel book (pages 557-597 2nd Ed).

Further information about the diagnostics pragma can be found by reading perldoc diagnostics

Exercise

You can see the diagnostics pragma in action by running the programexercises/diagnostics.pl .
If you want to, you can remove theuse diagnostics; line to see the errors without the explanations.

Starting your Perl program
To summarise, your perl program should always start with:

1. A shebang line (with warnings)

2. A comment (what your program does)

3. The strict pragma

Perl Training Australia (http://perltraining.com.au/) 23

Chapter 6. Perl variables

For example:

#!/usr/bin/perl -w
This program
use strict;

You may wish to adduse diagnostics; while your program is in development.

Scalars
The simplest form of variable in Perl is the scalar. A scalar is a single item of data such as:

• Arthur

• Just Another Perl Hacker

• 42

• 0.000001

• 3.27e17

Here’s how we assign values to scalar variables:

my $name = "Arthur";
my $whoami = ’Just Another Perl Hacker’;
my $meaning_of_life = 42;
my $number_less_than_1 = 0.000001;
my $very_large_number = 3.27e17; # 3.27 by 10 to the power of 1 7

There are other ways to assign things apart from the = operator, too. They’re covered on pages
107-108 (pages 92-93, 2nd Ed) of the Camel book.

A scalar can be text of any length, and numbers of any precision (machine dependent, of course).
Perl doesn’t need us to tell it whattypeof data we’re going to put into the scalar. In fact, Perl doesn’t
care if the type of data in the scalar changes throughout yourprogram. Perl magically converts
between them when it needs to. For instance, it’s quite legalto say:

Adding an integer to a floating point number.
my $sum = $meaning_of_life + $number_less_than_1;

Here we’re putting the number in the middle of a string we
want to print.
print "$name says, ’The meaning of life is $meaning_of_life .’\n";

This may seem extraordinarily alien to those used to strictly typed languages, but believe it or not,
the ability to transparently convert between variable types is one of the great strengths of Perl. Some
people say that it’s also one of the great weaknesses.

You can explicitly cast scalars to various specific data types. Look up int() on page 731 (page
180, 2nd Ed) of the Camel book, or read perldoc -f int for instance.

24 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

If you really want strictly typed scalars, Perl lets you have them. Check out perldoc
Attribute::Types . This isn’t installed with Perl by default but can be found at its page on CPAN
(http://search.cpan.org/perldoc?Attribute::Types). Attribute::Types goes beyond specifying that
a given scalar can only hold an integer, for example, as it also allows you to say that it must be
between two given values. Alternately you may wish to insist that a string be a member of a
selected set or that a value corresponds to the date of a full moon. Attribute::Types makes all
of these possible. Most Perl programmers don’t find this necessary, but sometimes it’s
invaluable.

If you want to understand how Perl handles numbers, read perldoc perlnumber .

Double and single quotes
While we’re here, let’s look at the assignments above. You’ll see that some have double quotes, some
have single quotes, and some have no quotes at all.

In Perl, quotes are required to distinguish strings from thelanguage’s reserved words or other
expressions. Either type of quote can be used, but there is one important difference: double quotes
can include other variable names inside them, and those variables will then be interpolated --- as in
the print example above --- while single quotes do not interpolate.

single quotes don’t interpolate...
my $price = ’$9.95’;

double quotes interpolate...
my $invoice_item = "24 widgets at $price each\n";

print $invoice_item;

Exercise
The above example is available in your directory asexercises/interpolate.pl . Run the script to
see what happens. Try changing the type of quotes for each string. What happens?

Special characters
Special characters, such as the\n newline character, are only available within double quotes. Single
quotes will fail to expand these special characters just as they fail to expand variable names. The
only exceptions are that you can quote a single quote or backslash with a backslash.

print ’Here\’s an example’;

When using either type of quotes, you must have a matching pair of opening and closing quotes. If
you want to include a quote mark in the actual quoted text, youcan escape it by preceding it with a
backslash:

print "He said, \"Hello!\"\n";
print ’It was Jamie\’s birthday.’;

Perl Training Australia (http://perltraining.com.au/) 25

Chapter 6. Perl variables

You can also use a backslash to escape other special characters such as dollar signs within double
quotes:

print "The price is \$300\n";

To include a literal backslash in a double-quoted string, use two backslashes:\\

Be careful, there’s a common syntax error when the last character of a string is a backslash:

print ’This is a backslash: \’;

In this case Perl reads the backslash as an escape for the quote character, and thus our string
does not terminate. In this case you must tell Perl that you don’t want this effect by escaping the
backslash:

print ’This is a backslash: \\’;

Perl has other quoting structures to help you avoid having to escape your quotes continually. To
read more about these, look at Appendix A.

Advanced variable interpolation
Sometimes you’ll want to do something like the following:

my $what = "jumper";
print "I have 4 $whats";

but this won’t work, because there is no such variable$whats , or if there is, it’s probably not the one
we want to be using. We could do:

my $what = "jumper";
print "I have 4 " . $what . "s";

and if you like that, then it’s fine. However, that’s pretty ugly, and there’s a nicer looking way of
doing it which involves less keystrokes as well:

my $what = "jumper";
print "I have 4 ${what}s";

I’m sure that you’ll agree that’s much better.

There are special quotes for executing a string as a shell command (see "Input operators" on
page 79 (page 52, 2nd Ed) of the Camel book), and also special quoting functions (see "Pick
your own quotes" on page 63 (page 41, 2nd Ed)). These are also covered in Appendix A.

26 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

Exercises

1. Write a script which sets some variables:

a. your name

b. your street number

c. your favourite colour

2. Print out the values of these variables using double quotes for variable interpolation.

3. Change the quotes to single quotes. What happens?

4. Write a script which prints out the stringC:\WINDOWS\SYSTEM\twice -- once using double
quotes, once using single quotes. How do you have to escape the backslashes in each case?

You’ll find answers to the above inexercises/answers/scalars.pl .

Arrays
If you think of a scalar as being a singular thing, arrays are the plural form. Just as you have a flock
of chickens or a wunch of bankers, you can have an array of scalars.

An array is a list of (usually related) scalars all kept together. Arrays start with an@(at sign).

Arrays are discussed on pages 9-10 (page 6, 2nd Ed) of the Camel book and also in perldoc
perldata .

Initialising an array
Arrays are initialised by creating a comma separated list ofvalues:

my @fruits = ("apples", "oranges", "guavas", "passionfrui t", "grapes");
my @magic_numbers = (23, 42, 69);
my @random_scalars = ("mumble", 123.45, "willy the wombat" , -300);

As you can see, arrays can contain any kind of scalars. They can have just about any number of
elements, too, without needing to know how many before you start.Reallyany number - tens or
hundreds of thousands, if your computer has the memory.

Reading and changing array values
First of all, Perl’s arrays, like those in many other languages, are indexed from zero. We can access
individual elements of the array like this:

print $fruits[0]; # prints "apples"
print $random_scalars[2]; # prints "willy the wombat"
$fruits[0] = "pineapples"; # Changes "apples" to "pineappl es"

Perl Training Australia (http://perltraining.com.au/) 27

Chapter 6. Perl variables

Wait a minute, why are we using dollar signs in the example above, instead of at signs? The reason is
this: we only want a scalar back, so we show that we want a scalar. There’s a useful way of thinking
of this, which is explained in chapter 1 (both editions) of the Camel book: if scalars are the singular
case, then the dollar sign is like the word "the" - "the name","the meaning of life", etc. The@sign on
an array, or the%sign on a hash, is like saying "those" or "these" - "these fruit", "those magic
numbers". However, when we only want one element of the array, we’ll be saying things like "the
first fruit" or "the last magic number" - hence the scalar-like dollar sign.

Array slices
If we wanted to only deal with a portion of the array, we use what we call anarray slice. These are
written as follows:

@fruits[1,2,3]; # oranges, guavas, passionfruit
@fruits[3,1,2]; # passionfruit, oranges, guavas
@magic_numbers[0..2]; # 23, 42, 69
@magic_numbers[1..5] = (46, 19, 88, 12, 23); # Assigns new ma gic numbers

You’ll notice that these array slices have@signs in front of them. That’s because we’re still dealing
with a list of things, just one that’s (typically) smaller than the full array. It is possible to take an
array slice of a single element:

@fruits[1]; # array slice of one element

but this usually means that you’ve made a mistake and Perl will warn you that what you really
should be writing is:

$fruits[1];

You just learnt something new back there: the.. ("dot dot") range operator creates a temporary list
of numbers between the two you specify. In our case we specified 0 and 2 (then 1 and 5), but it could
have been 1 to 100, or 30 to 70, if we’d had an array big enough touse it on. You’ll run into this
operator again and again.

See pages 103-104 (pages 90-91, 2nd Ed) of the Camel book or perldoc perlop for more
information about the dot dot operator.

Array interpolation
Another thing you can do with arrays is insert them into a string, the same as for scalars:

print "My favourite fruits are @fruits\n"; # whole array
print "Two types of fruit are @fruits[0,2]\n"; # array slice
print "My favourite fruit is $fruits[3]\n"; # single elemen t

28 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

Counting backwards
It’s also possible to count backwards from the end of an array, like this:

$fruits[-1]; # Last fruit in the array, grapes in this case.
$fruits[-3]; # Third last fruit: guavas.

Finding out the size of an array
So if we don’t know how many items there are in an array, how canwe find out? There are two ways
you might do this.

There’s a special syntax$#array which is the index of the last element, so you can say:

my $last = $#fruits; # index of last element

However, if you print either$last or $#fruits you’ll find the value is4, which is not the same as
the number of elements: 5. Remember that it’s theindex of the last elementand that the indexstarts
at zero, so you have to add one to it to find out how many elements are in the array.

my $number_of_fruits = $#fruits + 1;

If the array is empty,$#fruits returns-1 .

Unfortunately,$#fruits is easily confused with#$fruits (a comment!), and it can often cause
off-by-one errors and other bugs. Thus it is generally considered a bad idea.

Fortunately, there’s an easier way to find out the size of an array. If you evaluate the array in a scalar
context Perl will give you the only scalar value that makes sense: the number of elements in the array.

my $fruit_count = @fruits;

There’s a more explicit way to do it as well --- scalar(@fruits) and int(@fruits) will also tell us
how many elements there are in the array. Both of these functions force a scalar context, so
they’re really using the same mechanism as the $fruit_count example above. We’ll talk more
about contexts soon.

Using qw// to populate arrays
If you’re working with lists and arrays a lot, you might find that it gets very tiresome to be typing so
many quotes and commas. Let’s take our fruit example:

my @fruits = ("apples", "oranges", "guavas", "passionfrui t", "grapes");

We had to type the quotes character ten times, along with fourcommas, and that was only for a short
list. If your list is longer, such as all the months in a year, then you’ll need even more punctuation to
make it all work. It’s easy to forget a quote, or use the wrong quote, or misplace a comma, and end
up with a trivial but bothersome error. Wouldn’t it be nice ifthere was a better way to create a list?

Well, there is a better way, using theqw// operator.qw// stands forquote words. It takes whitespace
separated words and turns them into a list, saving you from having to worry about all that tiresome
punctuation. Here’s our fruit example again usingqw// :

Perl Training Australia (http://perltraining.com.au/) 29

Chapter 6. Perl variables

my @fruits = qw/apples oranges guavas passionfruit grapes/ ;

As you can see, this is clear, concise, and difficult to get wrong. And it keeps getting better. Your list
can stretch over multiple lines, and your delimiter doesn’tneed to be a slash. Whatever punctuation
character that you place after theqw becomes the delimiter. So if you prefer parentheses over slashes,
that’s no problem at all:

my @months = qw(January February March April May June July Au gust
September October November December);

For more information about qw// and other quoting mechanisms, see see "Pick your own
quotes" on page 63 (page 41, 2nd Ed) of the Camel book. There’s also an excellent discussion
in perldoc perlop in the Quote and Quote-like Operators section. This is also covered in
Appendix A.

Printing out the values in an array
If you want to print out all the values in an array there are several ways you can do it:

my @fruits = qw/apples oranges guavas passionfruit grapes/ ;
print @fruits; # prints "applesorangesguavaspassionfrui tgrapes"
print join(", ", @fruits);# prints "apples, oranges, guava s, passionfruit, grapes"
print "@fruits"; # prints "apples oranges guavas passionfr uit grapes"

The first method takes advantage of the fact that print takes alist of arguments to print and prints
them out sequentially. The second usesjoin() which joins an array or list together by separating
each element with the first argument. The third option uses double quote interpolation and a little bit
of Perl magic to pick which character(s) to separate the words with.

A quick look at context
There’s a term you’ve heard used just recently but which hasn’t been explained:context. Context
refers to how an expression or variable is evaluated in Perl.The two main contexts are:

• scalar context, and

• list context

Scalar variables are always evaluated in scalar context, however arrays and hashes can be evaluated
in both scalar contexts (when we treat them as scalars) and list contexts (when we treat them as
arrays and hashes).

Here’s an example of an expression which can be evaluated in either context:

my @newarray = @array; # list context
my $howmany = @array; # scalar context
my $howmany2 = scalar(@array); # scalar context again (expl icitly)

If you look at an array in a scalar context, you’ll see how manyelements it has; if you look at it in
list context, you’ll see the contents of the array itself.

30 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

Many things in Perl are very specific about which context theyrequire and willforce lists into scalar
context when required. For example the+ (plus or addition) operator expects that its two arguments
will be scalars. Hence:

my @a = (1,2,3);
my @b = (4,5,6,7);
print @a + @b;

will print 7 (the sum of the two list’s lengths) rather than5 7 9 7 (the individual sums of the list
elements).

Many things in Perl have different behaviours depending upon whether or not they’re in an array
or scalar context. This is generally considered a good thing, as it means things can have a "Do
What I Mean" (DWIM) behaviour depending upon how they are used. Arrays are the most
common example of this, but we’ll see some more as we progress through the course.

There’s also a third type of context, the null context, where the result of an operation is just
thrown away. This usually isn’t discussed, because by its very definition we don’t care about
what result is returned.

What’s the difference between a list and an array?
Not much, really. A list is just an unnamed array. Here’s a demonstration of the difference:

printing a list of scalars
print ("Hello", " ", $name, "\n");

printing an array
my @hello = ("Hello", " ", $name, "\n");
print @hello;

If you come across something that wants a LIST, you can eithergive it the elements of list as in the
first example above, or you can pass it an array by name. If you come across something that wants an
ARRAY, you have to actually give it the name of an array. Examples of functions which insist on
wanting an ARRAY arepush() andpop() , which can be used for adding and removing elements
from the end of an array.

List values and Arrays are covered on page 72 (page 47, 2nd Ed) of the Camel book.

Exercises

1. Create an array of your friends’ names. (You’re encouraged to use theqw() operator.)

2. Print out the first element.

3. Print out the last element.

4. Print the array within a double-quoted string, ie:print "@friends"; and notice how Perl
handles this.

Perl Training Australia (http://perltraining.com.au/) 31

Chapter 6. Perl variables

5. Print out an array slice of the 2nd to 4th items within a double-quoted string (variable
interpolation).

6. Replace every second friend with another friend.

7. Write a print statement to print out your email address. How can you handle the@when you’re
using double quotes?

Answers to the above can be found inexercises/answers/arrays.pl

Advanced exercises

1. Print the array without putting quotes around its name, ie: print @friends; . What happens?
How is this different from what happens, when you printed thearray enclosed in double quotes?

2. What happens if you have a small array and then you assign a value to$array[1000] ? Print out
the array.

Answers to the above can be found inexercises/answers/arrays_advanced.pl

Hashes
A hash is a two-dimensional array which contains keys and values, they’re sometimes called
"associative arrays", or "lookup tables". Instead of looking up items in a hash by an array index, you
can look up values by their keys.

To find out more about hashes and hash slices have a look at Appendix A.

Hashes are covered in the Camel book on pages 6-10 (pages 7-8, 2nd Ed), then in more
detail on pages 76-78 (page 50, 2nd Ed) or in perldoc perldata .

Initialising a hash
Hashes are initialised in exactly the same way as arrays, with a comma separated list of values:

my %monthdays = ("January", 31, "February", 28, "March", 31 , ...);

Of course, there’s more than one way to do it:

my %monthdays = (
"January" => 31,
"February" => 28,
"March" => 31,
...

);

The spacing in the above example is commonly used to make hashassignments more readable.

The=> operator is syntactically the same as the comma, but is used to distinguish hashes more easily
from normal arrays. It’s pronounced "fat comma", or less often "fat arrow". It does have one
difference, you don’t need to put quotes around a bare word immediately before the=> operator as
these are always treated as strings:

32 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

my %monthdays = (
January => 31,
February => 28,
March => 31,
...

);

Note that we still have to quote strings on the right hand sid e.
my %pizza_prices = (

small => ’$5.00’,
medium => ’$7.50’,
large => ’$9.00’,

);

Reading hash values
You get at elements in a hash by using the following syntax:

print $monthdays{"January"}; # prints 31

Again you’ll notice the use of the dollar sign, which you should read as "the monthdays value
belonging to January".

Bare words inside the braces of the hash-lookup will be interpreted in Perl as strings, so usually you
can drop the quotes:

print $monthdays{March}; # prints 31

Adding new hash elements
You can also create elements in a hash on the fly:

$monthdays{"January"} = 31;
$monthdays{February} = 28;
...

Changing hash values
To change a value in a hash, just assign the new value to your key:

$pizza_prices{small} = ’$6.00’; # Small pizza prices have g one up

Deleting hash values
To delete an element from a hash you need to use thedelete function. This is used as follows:

delete($pizza_prices{medium}); # No medium pizzas anymor e.

Perl Training Australia (http://perltraining.com.au/) 33

Chapter 6. Perl variables

Finding out the size of a hash
Strictly speaking there is no equivalent to using an array ina scalar context to get the size of a hash.
If you take a hash in a scalar context you get back the number ofbuckets used in the hash, or zero if
it is empty. This is only really useful to determine whether or not there are any items in the hash, not
how many.

If you want to know the size of a hash, the number of key-value pairs, you can use thekeys function
in a scalar context. Thekeys function returns a list of all the keys in the hash.

my $size = keys %monthdays;
print $size; # prints "12" (so long as the hash contains

all 12 months)

Other things about hashes

• Hashes have no internal order.

• There are functions such aseach() , keys() andvalues() which will help you manipulate hash
data. We look at these later, when we deal with functions.

• Hash lookup is very fast, and is the speediest way of storing data that you need to access in a
random fashion.

You may like to look up the following functions which related to hashes: keys() , values() ,
each() , delete() , exists() , and defined() . You can do that using the command perldoc -f
function-name.

While it is true that traditional Perl hashes have no internal order, it is possible to keep insertion
order by also storing the keys in an array. Doing this yourself can be error-prone so to make
things easier, you can use the Tie::IxHash module which manages this work for you.

use Tie::IxHash;

my %hash;
tie (%hash, Tie::IxHash);

work with hash normally.

Tie::IxHash is available from CPAN, and you can read more at
http://search.cpan.org/perldoc?Tie::IxHash

To understand how this module works you may want to read perldoc perltie .

Exercises

1. Create a hash of people and something interesting about them.

2. Print out a given person’s interesting fact.

34 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

3. Change a person’s interesting fact.

4. Add a new person to the hash.

5. What happens if you try to print an entry for a person who’s not in the hash?

6. What happens if you try to print out the hash outside of any quotes? Look at the order of the
elements.

7. What happens if you try to print out the hash inside double quotes? Do you understand why this
happens?

8. What happens if you attempt to assign an array as a value into your hash?

Answers to these exercises are given inexercises/answers/hash.pl

Special variables
Perl has many special variables. These are used to set or retrieve certain values which affect the way
your program runs. For instance, you can set a special variable to turn interpreter warnings on and
off ($^W), or read a special variable to find out the command line arguments passed to your script
(@ARGV).

Special variables can be scalars, arrays, or hashes. We’ll look at some of each kind.

Special variables are discussed at length in chapter 2 of your Camel book (from page 653
(page 127, 2nd Ed) onwards) and in the perlvar manual page. You may also like to look up the
English module, which lets you use longer, more English-like names for special variables. You’ll
find more information on this by using perldoc English to read the module documentation.

Special variables don’t need to be declared like regular variables, as Perl already knows they exist. In
fact, it’s an error to try and declare a special variable withmy.

Changing a special variable in your code changes it for the entire program, from that point
onwards.

The special variable $_
The special variable that you’ll encounter most often, is called $_ ("dollar-underscore"), and it
represents the current thing that your Perl script’s working with --- often a line of text or an element
of a list or hash. It can be set explicitly, or it can be set implicitly by certain looping constructs
(which we’ll look at later).

The special variable$_ is often the default argument for functions in Perl. For instance, theprint()

function defaults to printing$_.

$_ = "Hello world!\n";
print;

If you think of Perl variables as being "nouns", then$_ is the pronoun "it".

Perl Training Australia (http://perltraining.com.au/) 35

Chapter 6. Perl variables

There’s more discussion of using $_ on page 658 (page 131, 2nd Ed) of your Camel book.

@ARGV - a special array
Perl programs accept arbitrary arguments or parameters from the command line, like this:

% printargs.pl foo bar baz

This passes "foo", "bar" and "baz" as arguments into our program, where they end up in an array
called@ARGV.

%ENV - a special hash
Just as there are special scalars and arrays, there is a special hash called%ENV. This hash contains the
names and values of environment variables. For example, thevalue of the environment variable
USER is available in$ENV{"USER"} . To view these variables under Unix, simply typeenvon the
command line. To view these under Microsoft Windows typeset.

Changing a value in the %ENV hash changes your program’s current environment. Any changes
to your program environment will be inherited by any child processes your program invokes.
However you cannot change the environment of the shell from which your program is called.

Exercises

1. Set$_ to a string like "Hello world", then print it out by using theprint() command’s default
argument.

2. Theprintargs script mentioned in the @ARGV example can be found in
exercises/printargs.pl . Run this script now passing in some arguments.

3. Write a program which takes two arguments from the commandline (a name and a favourite
food) and then prints out a message detailing that name likesthat food. An answer can be found
in exercises/answers/favouritefood.pl

4. A user’s home directory is stored in the environment variableHOME(Unix) or HOMEPATH(MS
Windows). Print out your own home directory.

5. What other things can you find in%ENV? You can find an answer inexercises/answers/env.pl

Chapter summary

• Perl variable names typically consist of alphanumeric characters and underscores. Lower case
names are used for most variables, and upper case for global constants.

36 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

• The statementuse strict; is used to make Perl require variables to be pre-declared andto avoid
certain types of programming errors.

• There are three types of Perl variables: scalars, arrays, and hashes.

• Scalars are single items of data and are indicated by a dollarsign ($) at the beginning of the
variable name.

• Scalars can contain strings, numbers and references.

• Strings must be delimited by quote marks. Using double quotemarks will allow you to interpolate
other variables and meta-characters such as\n (newline) into a string. Single quotes do not
interpolate.

• Arrays are one-dimensional lists of scalars and are indicated by an at sign (@) at the beginning of
the variable name.

• Arrays are initialised using a comma-separated list of scalars inside round brackets.

• Arrays are indexed from zero

• Item n of an array can be accessed by using$arrayname[n].

• The index of the last item of an array can be accessed by using$#arrayname .

• The number of elements in an array can be found by interpreting the array in a scalar context, eg
my $items = @array;

• Hashes are two-dimensional arrays of keys and values, and are indicated by a percent sign (%) at
the beginning of the variable name.

• Hashes are initialised using a comma-separated list of scalars inside curly brackets. Whitespace
and the=> operator (which is syntactically identical to the comma) can be used to make hash
assignments look neater.

• The value of a hash item whose key isfoo can be accessed by using$hashname{foo}

• Hashes have no internal order.

• $_ is a special variable which is the default argument for many Perl functions and operators

• The special array@ARGVcontains all command line parameters passed to the script

• The special hash%ENVcontains information about the user’s environment.

Perl Training Australia (http://perltraining.com.au/) 37

Chapter 6. Perl variables

38 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

In this chapter...
In this chapter, we look at some of the operators and functions which can be used to manipulate data
in Perl. In particular, we look at operators for arithmetic and string manipulation, and many kinds of
functions including functions for scalar and list manipulation, more complex mathematical
operations, type conversions, dealing with files, etc.

What are operators and functions?
Operators and functions are routines that are built into thePerl language to do stuff.

The difference between operators and functions in Perl is a very tricky subject. There are a couple of
ways to tell the difference:

• Functions usually have all their parameters on the right hand side,

• Operators can act in much more subtle and complex ways than functions,

• Look in the documentation --- if it’s inperldoc perlop, it’s an operator; if it’s inperldoc
perlfunc, it’s a function. Otherwise, it’s probably a subroutine.

The easiest way to explain operators is to just dive on in, so here we go.

Operators

There are lists of all the available operators, and what they each do, on pages 86-110 (pages
76-94, 2nd Ed) of the Camel book. You can also see them by typing perldoc perlop .
Precedence and associativity are also covered there.

If you’ve programmed in C before, then most of the Perl operators will be already be familiar to you.
Perl operators have the same precedence as they do in C. Perl also adds a number of new operators
which C does not have.

Arithmetic operators
Arithmetic operators can be used to perform arithmetic operations on variables or constants. The
commonly used ones are:

Table 7-1. Arithmetic operators

Operator Example Description

+ $a + $b Addition

- $a - $b Subtraction

Perl Training Australia (http://perltraining.com.au/) 39

Chapter 7. Operators and functions

Operator Example Description

* $a * $b Multiplication

/ $a / $b Division

% $a % $b Modulus (remainder when$a is
divided by$b, eg 11 % 3 = 2)

** $a ** $b Exponentiation ($a to the power
of $b)

Just like in C, there are some short cut arithmetic operators:

$a += 1; # same as $a = $a + 1
$a -= 3; # same as $a = $a - 3
$a * = 42; # same as $a = $a * 42
$a /= 2; # same as $a = $a / 2
$a %= 5; # same as $a = $a % 5;
$a ** = 2; # same as $a = $a ** 2;

(In fact, you can extrapolate the above with just about any operator --- see page 26 (page 17, 2nd Ed)
of the Camel book for more about this).

You can also use$a++ and$a-- if you’re familiar with such things.++$a and--$a also exist, which
increment (or decrement) the variable before evaluating it.

For example:

my $a = 0;
print $a++; # prints "0", but sets $a to 1.
print ++$a; # prints "2" after it has set $a to 2.

String operators
Just as we can add and multiply numbers, we can also do similarthings with strings:

Table 7-2. String operators

Operator Example Description

. $a . $b Concatenation (puts$a and$b

together as one string)

x $a x $b Repeat (repeat$a $b times --- eg
"foo" x 3 gives us "foofoofoo"

These can also be used as short cut operators:

$a .= " foo"; # same as $a = $a . " foo";
$a .= $bar; # same as $a = $a . $bar;
$a x= 3; # same as $a = $a x 3;

There’s more about the concatenation operator on page 95 (page 16, 2nd Ed) of the Camel
book.

40 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

Exercises

1. Calculate the cost of 17 widgets at $37.00 each and print the answer. (Answer:
exercises/answers/widgets.pl)

2. Print out a line of dashes without using more than one dash in your code (except for the-w).
(Answer:exercises/answers/dashes.pl)

3. Look overexercises/operate.pl for examples on how to use arithmetic and string operators.

Other operators
You’ll encounter all kinds of other operators in your Perl career, and they’re all described in the
Camel book from page 86 (page 76, 2nd Ed) onwards. We’ll coverthem as they become necessary to
us -- you’ve already seen operators such as the assignment operator (=), the fat comma operator (=>)
which behaves a bit like a comma, and so on.

While we’re here, let’s just mention what "unary" and "binary" operators are.

A unary operator is one that only needs something on one side of it, like the file operators or the
auto-increment (++) operator.

A binary operator is one that needs something on either side of it, such as the addition operator.

A trinary operator also exists, but we don’t deal with it in this course. C programmers will
probably already know about it, and can use it if they want.

Functions

There’s an introduction to functions on page 16 (page 8, 2nd Ed) of the Camel book, labelled
’Verbs’. Check out perldoc perlfunc too.

To find the documentation for a single function you can use perldoc -f functionname. For
example perldoc -f print will give you all the documentation for the print function.

A function is like an operator --- and in fact some functions double as operators in certain conditions
--- but with the following differences:

• longer names which are words rather than punctuation,

• can take any types of arguments,

• arguments always comeafter the function name.

The only real way to tell whether something is a function or anoperator is to check theperlop and
perlfunc manual pages and see which it appears in.

Perl Training Australia (http://perltraining.com.au/) 41

Chapter 7. Operators and functions

We’ve already seen and used a very useful function:print . The print function takes a list of
arguments (to print). For example:

my @array = qw/Buffy Willow Xander Giles/;
print @array; # print taking an array (which is just a named li st).
print "@array"; # Variable interpolation in our string adds spaces

between elements.

print "Willow and Xander"; # Printing a single string.
print("Willow and Xander"); # The same.

As you’ll have noticed, Perl does not insist that functions enclose their arguments within
parentheses. Bothprint "Hello"; andprint("Hello"); are correct. Feel free to use parentheses if
you want to. It usually makes your code easier to read.

There are good reasons for using parentheses all the time, because it’s easy to make certain
mistakes if you don’t. Take the following example:

print (3 + 7) * 4; # Wrong!

This prints 10, not 40. The reason is that whenever any Perl function sees parentheses after a
function or subroutine name, it presumes that to be its argument list. So Perl has interpreted the
line above as:

(print(3+7)) * 4;

That’s almost certainly not what you wanted. In fact, if you forgot to turn warnings on, it would
almost certainly provide you with many hours of fruitless debugging.

The best way of getting around this is to always use parentheses around your arguments:

print ((3+7) * 4); # Correct!

As you become more experienced with Perl, you can learn when it’s safe to drop the
parentheses.

Types of arguments
Functions typically take the following kind of arguments:

SCALAR -- Any scalar variable, for example:42, "foo" , or $a.

EXPR -- An expression (possibly built out of terms and operators) which evaluates to a scalar.

LIST -- Any named or unnamed list (remember that a named list is an array).

ARRAY -- A named list; usually results in the array being modified.

HASH -- Any named hash.

PATTERN -- A pattern to match on --- we’ll talk more about these later on, in Regular Expressions.

FILEHANDLE -- A filehandle indicating a file that you’ve opened or one of the pseudo-files that is
automatically opened, such as STDIN, STDOUT, and STDERR.

There are other types of arguments, but you’re not likely to need to deal with them in this course.

42 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

In chapter 29 (chapter 3, 2nd Ed) of the Camel book (starting on page 677, or page 141 2nd
Ed), you’ll see how the documentation describes what kind of arguments a function takes.

Return values
Just as functions can take arguments of various kinds, they can also return values which you can use.
The simplest return value is nothing at all, although this israre for Perl functions. Functions typically
return scalars or lists which you can; use immediately, capture for later or ignore.

If a function returns a scalar, and we want to use it, we can saysomething like:

my $age = 29.75;
my $years = int($age);

and$years will be assigned the returned value of theint() function when given the argument$age

--- in this case, 29, sinceint() truncates instead of rounding.

If we just wanted to do something to a variable and didn’t carewhat value was returned, we can call
the function without looking at what it returns. Here’s an example:

my $input = <STDIN>;
chomp($input);

chomp, as you’ll see if you typeperldoc -f chomp, is typically used to remove the newline character
from the end of the arguments given to it.chomp returns the number of characters removed from all
of its arguments.<STDIN> takes a line from STDIN (usually the keyboard). We talk more about this
later.

Functions can also return arrays and hashes, as well as scalars. For example, thesort function
returns a sorted array:

@sorted = sort @array;

More about context
We mentioned earlier a few things aboutlist contextandscalar context, and how arrays act
differently depending upon how you treat them. Functions and operators are the same. If a function
or operator acts differently depending upon context, it will be noted in the Camel book and the
manual pages.

Here are some Perl functions that care about context:

Table 7-3. Context-sensitive functions

What? Scalar context List context

reverse() Reverses characters in a string.Reverses the order of the
elements in an array.

each() Returns the next key in a hash.Returns a two-element list
consisting of the next key and
value pair in a hash.

Perl Training Australia (http://perltraining.com.au/) 43

Chapter 7. Operators and functions

What? Scalar context List context

gmtime() andlocaltime() Returns the time as a string in
common format.

Returns a list of second, minute,
hour, day, etc.

keys() Returns the number of keys (and
hence the number of key-value
pairs) in a hash.

Returns a list of all the keys in a
hash.

readdir() Returns the next filename in a
directory, or undef if there are no
more.

Returns a list of all the filenames
in a directory.

There are many other cases where an operation varies depending on context. Take a look at the notes
on context at the start ofperldoc perlfunc to see the official guide to this: "anything you want,
except consistency".

Some easy functions

Starting on page 683 (page 143, 2nd Ed) of the Camel book, there is a list of every single
Perl function, their arguments, and what they do. These are also listed in perldoc perlfunc .

String manipulation

Finding the length of a string

The length of a string can be found using thelength() function:

#!/usr/bin/perl -w

use strict;

my $string = "This is my string";
print length($string);

Case conversion

You can convert Perl strings from upper case to lower case, orvice versa, using thelc() anduc()

functions, respectively.

#!/usr/bin/perl -w

print lc("Hello World!"); # prints "hello world!"
print uc("Hello World!"); # prints "HELLO WORLD!"

The lcfirst() anducfirst() functions can be used to change only the first letter of a string.

#!/usr/bin/perl -w

print lcfirst("Hello World!"); # prints "hello World!"
print ucfirst(lc("Hello World!")); # prints "Hello world! "

44 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

Notice how, in the last line of the example above, theucfirst() operates on the result of thelc()

function.

chop() and chomp()

Thechop() function removes the last character of a string and returns that character.

#!/usr/bin/perl -w

use strict;
my $string = "Goodbye";

my $char = chop $string;
print $char; # "e"
print $string; # "Goodby"

Thechomp() function works similarly, butonly removes the last character if it is a newline. It will
only remove a single newline per string.chomp() returns the number of newlines it removed, which
will be 0 or 1 in the case ofchomping a single string.chomp() is invaluable for removing extraneous
newlines from user input.

#!/usr/bin/perl -w
use strict;

my $string1 = "let’s go dancing!";
my $string2 = "dancing, dancing!\n";

my $chomp1 = chomp $string1;
my $chomp2 = chomp $string2;

print $string1; # "let’s go dancing!";
print $string2; # "dancing, dancing!";

print $chomp1; # 0 (there was no newline to remove)
print $chomp2; # 1 (removed one newline)

Both chop andchomp can take a list of things to work on instead of a single element. If you chop a
list of strings, only the value of the last chopped characteris returned. If youchomp a list, the total
number of characters removed is returned.

Actually, chomp removes any trailing characters that correspond to the input record separator
($/), which is a newline by default. This means that chomp is very handy if you’re reading in
records which are separated by known strings, and you want to remove your separators from
your records.

String substitutions with substr()

Thesubstr() function can be used to return a portion of a string, or to change a portion of a string.
substr takes up to four arguments:

1. The string to work on.

2. The offset from the beginning of the string from which to start the substring. (First character has
position zero).

Perl Training Australia (http://perltraining.com.au/) 45

Chapter 7. Operators and functions

3. The length of the substring. Defaults to be from offset to end of the string.

4. String to replace the substring with. If not supplied, no replacement occurs.

#!/usr/bin/perl -w

use strict;

my $string = " *** Hello world! *** \n";
print substr($string, 4, 5); # prints "Hello"

substr($string, 4, 5) = "Greetings";
print $string; # prints " *** Greetings world! *** "

substr($string, 4, 9, "Howdy");
print $string; # prints " *** Howdy world! *** "

Exercises

1. Create a scalar variable containing the phrase "There’s more than one way to do it" then print it
out in all upper-case. (Answer:exercises/answers/tmtowtdi.pl)

2. Print out the third character of a word entered by the user as an argument on the command line.
(There’s a starter script inexercises/thirdchar.pl and the answer’s in
exercises/answers/thirdchar.pl)

3. Create a scalar variable containing the string "The quickbrown fox jumps over the lazy dog".
Print out the length of this string, and then using substr, print out the fourth word (fox).
(Answer:exercises/answers/substr.pl)

4. Replace the word "fox" in the above string with "kitten".

Numeric functions
There are many numeric functions in Perl, including trigonometric functions and functions for
dealing with random numbers. These include:

• abs() (absolute value)

• cos() , sin() , andatan2()

• exp() (exponentiation)

• log() (logarithms)

• rand() andsrand() (random numbers)

• sqrt() (square root)

46 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

Type conversions
The following functions can be used to force type conversions (if you really need them):

• oct()

• int()

• hex()

• chr()

• ord()

• scalar()

Manipulating lists and arrays

Stacks and queues

Stacks and queues are special kinds of lists.

A stack can be thought of like a stack of paper on a desk. Thingsare put onto the top of it, and taken
off the top of it. Stacks are also referred to as "LIFO" (for "Last In, First Out").

A queue, on the other hand, has things added to the end of it andtaken out of the start of it. Queues
are also referred to as "FIFO" lists (for "First In, First Out").

We can simulate stacks and queues in Perl using the followingfunctions:

• push() -- add items to the end of an array.

• pop() -- remove items from the end of an array.

• shift() -- remove items from the start of an array.

• unshift() -- add items to the start of an array.

A queue can be created bypush ing items onto the end of an array andshift ing them off the front.

A stack can be created bypush ing items on the end of an array andpopping them off.

my @stack = qw(a b c d e f g);
my @queue = qw(1 2 3 4 5 6 7 8 9 10);

Pop something off the stack:
my $current = pop @stack; # stack is now: a b c d e f

Push something on to the stack:
push @stack, ’h’; # stack is now: a b c d e f h

Push something on to the queue:
push @queue, ’11’; # queue is now: 1 2 3 4 5 6 7 8 9 10 11

Shift something off the queue:
my $next = shift @queue; # queue is now: 2 3 4 5 6 7 8 9 10 11

Perl Training Australia (http://perltraining.com.au/) 47

Chapter 7. Operators and functions

Ordering lists

Thesort() function, when used on a list, returns a sorted version of that list. It does notalter the
original list.

Thereverse() function, when used on a list, returns the list in reverse order. It does notalter the
original list.

#!/usr/bin/perl -w

my @list = ("a", "z", "c", "m");
my @sorted = sort(@list);
my @reversed = reverse(sort(@list));

Converting lists to strings, and vice versa

The join() function can be used to join together the items in a list into one string. Conversely,
split() can be used to split a string into elements for a list.

#!/usr/bin/perl -w
use strict;

my $record = "Fenwick:Paul:Melbourne:Australia";
my @fields = split(/:/,$record);

@fields is now ("Fenwick","Paul","Melbourne","Austral ia");

my $newrecord = join(",",@fields);

$newrecord is now "Fenwick,Paul,Melbourne,Australia";

The /:/ in the split function is aregular expression. It tells split what it should split on. We’ll cover
regular expressions in more details later.

Using split and join in simple cases such as the above is fine. However often real world
data is much more complicated, such as comma or tab separated files, where the separator may
be allowed within the fields as well. For such tasks, we recommend the use of the Text::CSV_XS

module from CPAN.

Exercises
These exercises range from easy to difficult. Answers are provided in the exercises directory
(filenames are given with each exercise).

1. Usingsplit , print out the fourth word of the string "The quick brown fox jumps over the lazy
dog".

2. Print a random number.

3. Print a random item from an array. (Answer:exercises/answers/quotes.pl)

4. Print out a sentence in reverse

a. reverse the whole sentence (eg,ecnetnes elohw eht esrever).

48 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

b. reverse just the words (eg,words the just reverse).

(Answer:exercises/answers/reverse.pl) Hint: You may findsplit (perldoc -f split) useful
for this exercise.

5. Write a program which takes words on the command line and prints them out in a sorted order.
Change your sort method from asciibetical to alphabetical.Hint: you may wish to readperldoc
-f sort to see how you can pass your own comparison to the sort function. (Answer:
exercises/answers/command_sort.pl)

6. Add and remove items from an array usingpush , pop , shift andunshift . (Answer:
exercises/answers/pushpop.pl)

Hash processing
Thedelete() function deletes an element from a hash.

Theexists() function tells you whether a certain key exists in a hash.

Thekeys() andvalues() functions return lists of the keys or values of a hash, respectively.

Theeach() function allows you to iterate over key-value pairs.

Reading and writing files
Theopen() function can be used to open a file for reading or writing. Theclose() function closes a
file after you’re done with it.

We cover reading from and writing to files later in the course.These are not covered further here.

Time
The time() function returns the current time in Unix format (that is, the number of seconds since 1
Jan 1970).

Thegmtime() andlocaltime() functions can be used to get a more friendly representation of the
time, either in Greenwich Mean Time or the local time zone. Both can be used in either scalar or list
context.

To convert date and time information into a human-readable string you may want to usestrftime

from thePOSIX module:

use POSIX qw(strftime);

Current time in YYYY-MM-DD format:
print strftime("%Y-%m-%d"", localtime());

For information on what the format string identifiers mean, consult your system’sstrftime()

documentation. For exampleman strftime on a *nix system. Also read thestrftime documentation
in perldoc POSIX for portability considerations.

Perl Training Australia (http://perltraining.com.au/) 49

Chapter 7. Operators and functions

Exercises

1. Create a hash anddelete an element. Useexists to test if hash keys do or do not exist.
(Answer:exercises/answers/hash2.pl)

2. Print the list of keys in a hash. (Answer:exercises/answers/hash2.pl)

3. Print out the date for a week ago (the answer’s inexercises/answers/lastweek.pl)

4. Readperldoc -f localtime.

Chapter summary

• Perl operators and functions can be used to manipulate data and perform other necessary tasks.

• The difference between operators and functions is blurred;most can behave in either way.

• Functions can accept arguments of various kinds.

• Functions may return any data type.

• Return values may differ depending on whether a function is called in scalar or list context.

50 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

In this chapter...
In this chapter, we look at Perl’s various conditional constructs and how they can be used to provide
flow control to our Perl programs. We also learn about Perl’s meaning of truth and how to test for
truth in various ways.

What is a conditional statement?
A conditional statement is one which allows us to test the truth of some condition. For instance, we
might say "If the ticket price is less than ten dollars..." or"While there are still tickets left..."

You’ve almost certainly seen conditional statements in other programming languages, but Perl has a
conditional that you probably haven’t seen before. Theunless(condition) is exactly the same as
if(!(condition)) but easier to read.

Perl’s conditional statements are listed and explained on pages 111-115 (pages 95-106, 2nd
Ed) of the Camel book.

What is truth?
Conditional statements invariably test whether somethingis true or not. Perl thinks something is true
if it doesn’t evaluate to the number zero (0), the string containing a single zero ("0"), an empty string
(""), or the undefined value.

"" # false (” would also be false)
42 # true
0 # false
"0" # false
"00" # true, only a single zero is considered false
"wibble" # true
$new_variable # false (if we haven’t set it to anything, it’s undefined)

The Camel book discusses Perl’s idea of truth on pages 29-30 (pages 20-21, 2nd Ed)
including some odd cases.

The if conditional construct
A very common conditional construct is to say: if this thing is true do something special, otherwise
don’t. Perl’sif construct allows us to do exactly that.

Perl Training Australia (http://perltraining.com.au/)
51

Chapter 8. Conditional constructs

The if construct looks like this:

if (conditional statement) {
BLOCK

} elsif (conditional statement) {
BLOCK

} else {
BLOCK

}

Both theelsif andelse parts of the above are optional, and of course you can have more than one
elsif . Note thatelsif is also spelled differently to other languages’ equivalents --- C programmers
should take especial note to not useelse if .

The parentheses around the conditional are mandatory, as are the curly braces. Perl does not allow
dangling statements as does C.

If you’re testing whether something is false, you can use thelogically opposite construct,unless .

unless (conditional statement) {
BLOCK

}

Theunless construct is identical to usingif(not $condition) . This may be best illustrated by
use of an example:

make sure we have apples # make sure we have apples
if(not $I_have_apples) { unless($I_have_apples) {

go_buy_apples(); go_buy_apples();
} }

now that we have apples... # now that we have apples...
make_apple_pie(); make_apple_pie();

There is no such thing as anelsunless (thank goodness!), and if you find yourself using anelse

with unless then you should probably have written it as anif test in the first place.

There’s also a shorthand, and more English-like, way to useif andunless :

print "We have apples\n" if $apples;
print "We have no bananas\n" unless $bananas;

So what is a BLOCK?
A block is a hunk of code within curly braces or a file. Blocks can be nested inside larger blocks. The
simplest (useful) block is a single statement, for instance:

{
print "Hello world!\n";

}

Sometimes you’ll want several statements to be grouped together logically so you can enclose them
in a block. A block can be executed either in response to some condition being met (such as after an
if statement), or as an independent chunk of code that may be given a name.

Blocks always have curly brackets ({ and}) around them. In C and Java, curly brackets are optional
in some cases - not so in Perl. Note that it’s perfectly acceptable to have a block that is not part a
condition or subroutine (called a naked block). We’ll see a use for such blocks in our section on
scope.

52 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

{
my $fruit = "apple";
my $howmany = 32;
print "I’d like to buy $howmany ${fruit}s\n";

}

You’ll notice that the body of the block is indented from the brackets; this is to improve readability.
Make a habit of doing it. You’ll also recognise our use of${fruit} from our discussion on variable
interpolation earlier.

The Camel book refers to blocks with curly braces around them as BLOCKs (in capitals). It
discusses them on page 111 onwards (97 onwards, 2nd Ed).

Scope
Something that needs mentioning again at this point is the concept of variable scoping. You will
recall that we use themy function to declare variables when we’re using thestrict pragma. Themy

also scopes the variables so that they are local to thecurrent block, which means that these variables
areonlyvisible inside that block.

use strict;
my $a = "foo";
{ # start a new block

my $a = "bar"; # a new $a
print "$a\n"; # prints bar

}
print $a; # prints foo

We say that the$a of the inside blockshadowsthe$a in the outside block. This is true of all blocks:

my $a = 0;
my $b = 0;

unless($a) {
$a = 5; # changes $a
my $b = 5; # shadows $b (a new $b)
print "$a, $b\n"; # prints "5, 5"

}
print "$a, $b\n"; # prints "5, 0"

Temporary changes to Perl’s special variables can be performed by using local . It’s not possible
to use local on a lexical variable declared with my.

$_ = "fish and chips and vinegar";
print $_; # prints "fish and chips and vinegar"
{

local $_ = $_; # allows changes to $_ which only affect this blo ck

$_ .= " and a pepper pot ";

print $_; # prints "fish and chips and vinegar and a pepper pot "
}

$_ reverts back to previous version
print $_; # prints "fish and chips and vinegar"

Perl Training Australia (http://perltraining.com.au/) 53

Chapter 8. Conditional constructs

local ising and then changing our variables changes their value not only for the the block we’ve
local ised them within, but for every function and subroutine that is called from within that block.
As this may not be what you want, it is good practice to keep the scope of our localised variable
as small as possible.

Comparison operators
We can compare things, and find out whether our comparison statement is true or not. The operators
we use for this are:

Table 8-1. Numerical comparison operators

Operator Example Meaning

== $a == $b Equality (same as in C and other
C-like languages)

!= $a != $b Inequality (again, C-like)

< $a < $b Less than

> $a > $b Greater than

<= $a <= $b Less than or equal to

>= $a >= $b Greater than or equal to

<=> $a <=> $b Star-ship operator, see below

The final numerical comparison operator (commonly called the starship operator as it looks
somewhat like an ASCII starship) returns -1, 0, or 1 depending on whether the left argument is
numerically less than, equal to, or greater than the right argument. This is commonly seen in use
with sorting functions.

If we’re comparing strings, we use a slightly different set of comparison operators, as follows:

Table 8-2. String comparison operators

Operator Example Meaning

eq $a eq $b Equality

ne $a ne $b Inequality

lt $a lt $b Less than (in "asciibetical" order)

gt $a gt $b Greater than

le $a le $b Less than or equal to

ge $a ge $b Greater than or equal to

cmp $a cmp $b String equivalent of<=>

Some examples:

69 > 42; # true
"0" == 3 - 3; # true
’apple’ gt ’banana’; # false - apple is asciibetically befor e

banana

54 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

1 + 2 == "3com"; # true - 3com is evaluated in numeric
context because we used == not eq [**]

0 == "fred"; # true - fred in a numeric context is 0 [**]
0 eq "fred"; # false
0 eq 00; # true - both are "0" in string context.
0 eq "00"; # false - string comparison. "0" and

"00" are different strings.
undef; # false - undefined is always false.

The examples above marked with[**] will behave as described but give the following warnings if
you use the-w flag:

Argument "3com" isn’t numeric in numeric eq (==) at conditio ns.pl line 5.
Argument "fred" isn’t numeric in numeric eq (==) at conditio ns.pl line 7.

This occurs because although Perl is happy to attempt to massage your data into something
appropriate for the expression, the fact that it needs to do so may indicate an error.

Assigningundef to a variable name undefines it again, as does using theundef function with the
variable’s name as its argument.

my $foo = "bar";
$foo = undef; # makes $foo undefined
undef($foo); # same as above

Exercises

1. Write a program which takes a value from the command line and compares it using anif
statement as follows:

a. If the number is less than 3, print "Too small"

b. If the number is greater than 7, print "Too big"

c. Otherwise, print "Just right"

Seeexercises/answers/if.pl for an answer.

2. Set two variables to your first and last names. Use anif statement to print out whichever of
them comes first in the alphabet (answer inexercises/answers/comp_names.pl).

Existence and definitiveness
We can also check whether things are defined (something is defined when it has had a value assigned
to it), or whether an element of a hash exists.

To find out if something is defined, use Perl’sdefined function. The defined function is necessary to
distinguish between a value that is false because it is undefined and a value that is false but defined,
such as0 (zero) or"" (the empty string).

my $skippy; # $skippy is undefined and false

$skippy = "bush kangaroo"; # true and defined
print "true" if $skippy; # prints true
print "defined" if defined($skippy); # prints defined

Perl Training Australia (http://perltraining.com.au/) 55

Chapter 8. Conditional constructs

$skippy = ""; # false and defined
print "true" if $skippy; # does not print
print "defined" if defined($skippy); # prints defined

$skippy = undef; # false and undefined
print "true" if $skippy; # does not print
print "defined" if defined($skippy); # does not print

It’s possible for a hash to have an element that is associatedwith an undefined value. In this case the
elementexistsbut is notdefined. To find out if an element of a hash exists, use theexists function:

my %miscellany = (
"apple" => "red", # exists, defined, true
"howmany" => 0, # exists, defined, false
"name" => "", # exists, defined, false
"koala" => undef, # exists, undefined, false

);

if(exists $miscellany{"Blinky Bill"}) {
print "Blinky Bill exists.\n"; # Does NOT get printed

}

if (exists $miscellany{koala}) {
print "koala exists\n"; # This IS printed

}

if (defined $miscellany{koala}) {
print "koala is defined\n"; # Does NOT get printed

}

The defined function is described in the Camel book on page 697 (page 155, 2nd Ed), and
also by perldoc -f defined .

The exists function is described in the Camel book on page 710 (page 164, 2nd Ed), and also
by perldoc -f exists .

Exercise
The following exercise uses the hash below:

my %num_of_cars = (
Bob => 1, # Bob has 1 car
Jane => 2, # Jane has 2 cars
Jack => 0, # Jack doesn’t own a car
Paul => undef, # Paul didn’t answer the question

);

Andrew isn’t our friend (he’s not in the hash)

You can find a starting hash inexercises/friends.pl .

1. Write a program which takes the name of a friend on the command line and returns the number
of cars that friend has. You’ll want to produce different messages for the following cases: the

56 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

friend has 1 or more cars, the friend has no car, the friend didn’t answer the question, the given
person isn’t our friend.

Remember we want to be able to add more friends into our hash later, without having to change
the code. An answer can be found inexercises/answers/exists.pl

Boolean logic operators
Boolean logic operators can be used to combine two or more Perl statements, either in a conditional
test or elsewhere.

These operators come in two flavours: line noise, and English. Both do similar things but have
different precedence. This sometimes causes great confusion. If in doubt, use parentheses to force
evaluation order.

Alright, if you insist: and and or operators have very low precedence (i.e. they will be evaluated
after all the other operators in the condition) whereas && and || have quite high precedence and
may require parentheses in the condition to make it clear which parts of the statement are to be
evaluated first.

Table 8-3. Boolean logic operators

English-like C-style Example Result

and && $a && $b

$a and $b

True if both$a and$b

are true; acts on$a then
if $a is true, goes on to
act on$b.

or || $a || $b

$a or $b

True if either of$a and
$b are true; acts on$a

then if $a is false, goes
on to act on$b.

not ! ! $a

not $a

True if $a is false. False
if $a is true.

Here’s how you can use them to combine conditions in tests:

my $a = 1;
my $b = 2;

! $a # False
not $a # False
$a == 1 and $b == 2 # True
$a == 1 or $b == 5 # True
$a == 2 or $b == 5 # False
($a == 1 and $b == 5) or $b == 2 # True (parenthesised expression

Perl Training Australia (http://perltraining.com.au/) 57

Chapter 8. Conditional constructs

Logic operators and short circuiting
These operators aren’t just for combining tests in conditional statements --- they can be used to
combine other statements as well. An example of this is shortcircuit operations. When Perl sees a
true value to the left of a logicalor operator (either|| or or) it short circuitsby not evaluating the
right hand side, because the statement is already true. WhenPerl sees a false value to the left of a
logical and operator it short circuits by not evaluating the right hand side, because the statement is
already false. This is fantastic because it means we can put things on the right hand side of these
operators that we only want to be executed under certain conditions.

Here’s a real, working example of the|| short circuit operator:

open(INFILE, "< input.txt") || die("Can’t open input file: $!");
Or
open(INFILE, "< input.txt") or die("Can’t open input file: $!");

The open() function can be found on page 747 (page 191, 2nd Ed) of the Camel book, if you
want to look at how it works. It’s also described in perldoc -f open .

The die() function can be found on page 700 (page 157, 2nd Ed) of the Camel book. Also see
perldoc -f die .

The&& operator is less commonly used outside of conditional tests, but is still very useful. Its
meaning is this: if the first operand returns true, the secondwill also happen. As soon as you get a
false value returned, the expression stops evaluating.

($day eq ’Friday’) && print "Have a good weekend!\n";

The typing saved by the above example is not necessarily worth the loss in readability, especially as
it could also have been written:

print "Have a good weekend!\n" if $day eq ’Friday’;

if ($day eq ’Friday’) {
print "Have a good weekend!\n";

}

...or any of a dozen other ways. That’s right, there’s more than one way to do it.

The most common usage of the short circuit operators, especially || (or or) is to trap and handle
errors, such as when opening files or interacting with the operating system.

Short circuit operators are covered from page 102 (page 89, 2nd Ed) of the Camel book.

Boolean assignment
Boolean logic operators are great in conditional statements and as short circuit operators but they can
also be used in assignment. Consider the following:

$a ||= 0; # Which is short hand for $a = $a || 0;

58 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

What does this do for us? It says, if$a is not true (that is; if$a is any of0 (zero),"" (the empty
string) orundef (the undefined value)), set it to be0. After this statement we know for certain that$a

is both defined and valid, even if it isn’t true.

Loop conditional constructs
Often when coding you wish to do the same task a number of times. For example for every line of a
file, or while there is input from the user or for every elementof an array. This is why there are
looping constructs.

while loops
We can repeat a block while a given condition is true:

while (conditional statement) {
BLOCK

}

if $hunger <= 0 to start with, this will never start.
my $hunger = 5;
while ($hunger > 0) {

print "Feed me!\n";
$hunger--;

}

The logical opposite of this is the "until" construct:

$full = -5;
until ($full > 0) {

print "Feed me!\n";
$full++;

}

Like the if andunless constructs,while anduntil also have their shorthand forms:

print "Feed me!\n" while ($hunger-- > 0);
print "Feed me!\n" until ($full++ > 0);

Like the shorthand conditionals, these forms may only have asingle statement on the left hand side.

for and foreach
Perl has afor construct identical to C and Java:

for (my $count = 0; $count <= $enough; $count++) {
print "Had enough?\n";

}

However, since we often want to loop through the elements of an array, we have a special "shortcut"
looping construct calledforeach , which is similar to the construct available in some Unix shells.
Compare the following:

Perl Training Australia (http://perltraining.com.au/) 59

Chapter 8. Conditional constructs

using a for loop
for (my $i = 0; $i < @array; $i++) {

print $array[$i] . "\n";
}

using foreach
foreach (@array) {

print "$_\n";
}

You’ll notice above that we used the special variable$_ to print each element in our array.foreach

doesn’t have to bind$_ to the array elements, you can name your own variable to use instead.

foreach my $value (@array) {
print "$value\n";

}

Naming the variable you want to bind with inforeach is often good programming practice, as it can
make your code much more readable. However, there are cases when allowing Perl to bind to$_

results in better looking code. We’ll see some examples of this later on when we cover regular
expressions.

When in a foreach loop, the variable representing the current element is the current element,
not just a copy of it. This means that if you change this variable, you change the original. For
example, the following loop will double all the numbers in a list:

foreach (@numbers) {
$_ = $_ * 2;

}

foreach(n..m) can be used to automatically generate a list of numbers between n and m.

We can loop through hashes easily too, using thekeys function to return the keys of a hash as an list
that we can use:

foreach my $month (keys %monthdays) {
print "There are $monthdays{$month} days in $month.\n";

}

foreach constructs may also be used in a trailing form:

print $_ foreach (@array);

Exercises

1. Print out the keys and values for each item, from a hash, using a foreach loop (hint: look up the
keys function in your Camel book or useperldoc -f keys). A starter can be found in
exercises/loops_starter.pl

60 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

2. Use awhile loop to print out a numbered list of the elements in an array

3. Now do it with afor loop

4. Try it with a foreach loop (this is a little harder).

Answers are given inexercises/answers/loops.pl

Practical uses of while loops: taking input from STDIN
STDIN is the standard input stream for any Unix program. If a program is interactive, it will take
input from the user via STDIN. Many Unix programs accept input from STDIN via pipes and
redirection. For instance, the Unixcat utility prints out all the files given to it on the command line,
but will also print out files redirected to its STDIN:

% cat < hello.pl

Unix also has STDOUT (the standard output) and STDERR (whereerrors are printed to).

We can get a Perl script to take input from STDIN (standard input) and do things with it by using the
line input operator, which is a set of angle brackets with thename of a filehandle in between them:

my $user_input = <STDIN>;

The above example takes a single line of input from STDIN. Theinput is terminated by the user
hitting Enter. If we want to repeatedly take input from STDIN, we can use the line input operator in a
while loop:

#!/usr/bin/perl -w

while ($_ = <STDIN>) {
do some stuff here, if you want...
print; # remember that print takes $_ as its default argument

}

When Perl sees a simple assignment from a filehandle as the condition of a while loop, it
automatically checks that the value is defined rather that just true. This saves us from having to write:

while (defined($_ = <STDIN>)) {

which we’d otherwise have to do.

Input continues to be taken until the end of file character (commonly written EOF) is encountered.

Conveniently enough, thewhile statement can be written more succinctly, because inside awhile or
until loop, the line input operator assigns to$_ by default:

while (<STDIN>) {
print;

}

The above construct is exactly equivalent to our previous example.

The readline operator also has its own default behaviour, soin most circumstances we can shorten
the above loop even further:

while (<>) {
print;

}

Perl Training Australia (http://perltraining.com.au/) 61

Chapter 8. Conditional constructs

The<> (diamond) construct is highly magical. It opens and reads files listed on the command line
(from @ARGV), or fromSTDIN if no files are listed. This is an incredible useful constructthat is well
worth remembering.

As always, there’s more than one way to do it.

Exercises
The above example script (which is available in your directory asexercises/cat.pl) will basically
perform the same function as the Unixcat command; that is, print out whatever’s given to it through
STDIN.

You’ll have to type some stuff in, line by line. When you’ve finished entering input, hitCTRL -D
(a.k.a.̂ D) on Unix orCTRL -Z (a.k.a.̂ Z) for Windows. This character sequence stands forend of
file (EOF) which is false. Thus thewhile loop will end and any further code will be executed.

1. Try running the script with no arguments.

2. Now try giving it a file by using the shell to redirect its ownsource code to it:

perl exercises/cat.pl < exercises/cat.pl

This should make it print out its own source code.

3. Since thecat.pl program uses the diamond construct, it will also process files presented on the
command line. Use it to display the concatenated contents ofa couple of other files.

Named blocks
Blocks can be given names, thus:

LINE:
while (<STDIN>) {

...
}

By convention, the names of blocks are in upper case. The nameshould also reflect the type of things
you are iterating over --- in this case, lines of text from STDIN.

Breaking out or restarting loops
You can change loop flow (to restart or end) by using the functionsnext , last andredo .

LINE:
while (<STDIN>) {

chomp; # remove newline
next LINE if $_ eq ""; # skip blank lines
last LINE if lc($_) eq ’q’; # quit

}

Writing next LINE tells Perl to repeat the block namedLINE from the start. Writinglast LINE tells
Perl to jump to the end of the block namedLINE and continue program execution. By defaultnext

andlast affect the current smallest loop. In the example above the current smallest loop is the while
loop so the block nameLINE could have been omitted leaving us with:

62 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

while (<STDIN>) {
chomp; # remove newline
next if $_ eq ""; # skip blank lines
last if lc($_) eq ’q’; # quit

}

Named blocks are most useful when we wish to break out of a loophigher up the chain:

LINE:
while (<STDIN>) {

chomp; # remove newline
next if $_ eq ""; # skip blank lines

we split the line into words and check all of them
foreach my $word (split /\s+/,$_) {

last LINE if lc($word) eq ’quit’; # quit
}

}

There is another loop flow function namedredo . redo allows you to restart the loop at the top
without evaluating the conditional again. This command is not used very often but it useful for
programs which want to lie to themselves about what they’ve just seen. For example:

foreach my $file (@files_to_delete) {
print "Are you sure you want to delete $file? [y|n]\n";

my $answer = <STDIN>;
chomp $answer;
$answer = lc $answer;

if($answer eq ’y’) {
unlink $file or warn "Delete failed: $!";

}
elsif($answer eq ’n’) {

print "$file not deleted\n";
}
else {

invalid input
redo;

}
}

In this case, had we usednext the file we were dealing with would have been lost when we
re-evaluated the condition<>. Thus the file would be neither deleted, nor reported on as notdeleted.
redo refers to the innermost enclosing loop by default but can also take a LABEL likenext andlast .

Checkout perldoc -f last , perldoc -f next and perldoc -f redo for information on these
functions.

Practical exercise
Write a program which generates a random integer between 1 and 100 and then asks the user to
guess it. Verify that the user’s guess is a number between 1 and 100 before proceeding. If it is not,
tell the user and ask for a new number. If the user guesses too high, or too low, tell them so and ask
again. If the user gets the number correct; terminate the loop and congratulate them. Count how
many guesses it required and report this at the end.

Perl Training Australia (http://perltraining.com.au/) 63

Chapter 8. Conditional constructs

An answer can be found inexercises/answers/guessing_game.pl . Try the exercise first before
looking at the answer.

Chapter summary

• A block in Perl is a series of statements grouped together by curly braces. Blocks can be used in
conditional constructs and subroutines.

• A conditional construct is one which executes statements based on the truth of a condition.

• Truth in Perl is determined by testing whether something is NOT any of: numeric zero, the empty
string, or undefined.

• The if - elsif - else conditional construct can be used to perform certain actions based on the
truth of a condition.

• Theunless conditional construct is equivalent toif(not(...)) .

• Thewhile , for , andforeach constructs can be used to repeat certain statements based onthe truth
of a condition.

• A common practical use of thewhile loop is to read each line of a file.

• Blocks may be named using theNAME:convention.

• You can change execution flow in blocks by usingnext , redo andlast.

64 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Subroutines

In this chapter...
In this chapter, we look at subroutines and how they can be used to simplify your code. More
advanced material regarding subroutines and parameter passing can be found in Appendix B.

Introducing subroutines
If you have a long Perl script, you’ll probably find that thereare parts of the script that you want to
break out into subroutines (sometimes called functions in other languages). In particular, if you have
a section of code which is repeated more than once, it’s best to make it a subroutine to save on
maintenance (and, of course, line count).

What is a subroutine?

A subroutine is a set of statements which performs a specific task.

The statements in a subroutine are compiled into a unit whichcan then be called from anywhere in
the program. This allows your program to access the subroutine repeatedly, without the subroutine’s
code having been written more than once.

Subroutines are very much like Perl’s functions, however you can define your own subroutines for
the tasks at hand. We use Perl’sprint function to output data, rather than writing output code for
each and every character we wish to output. In a similar way, we can write subroutines to allow us to
reuse the same block of code from different parts of our program.

Just like Perl’sprint function can take arguments, so can your subroutines. They can also return
values of any type. If you find yourself repeating a task, it’soften best to consider what it needs to do
its task, and what information it needs to return, and then write your code into a subroutine.

Why use subroutines?
By creating your own subroutines, you are able to reduce coderepetition and improve code
maintainability. For example; rather than writing code to send an email to the administrator, and a
separate block of code to send an email to a user; you could combine the email sending code into a
single subroutine. Once written, you can then call this subroutine with the recipient of the mail and
what you wish to send them. Now if you ever need to change how ane-mail is sent, you only need to
change your code in one location.

Subroutines are used:

• to avoid or reduce redundant code,

• to improve maintainability and reduce possibility of errors,

• to reduce complexity by breaking complex problems into smaller, more simple pieces,

• to improve readability in the program,

Perl Training Australia (http://perltraining.com.au/)
65

Chapter 9. Subroutines

Using subroutines in Perl

For a more comprehensive coverage than we give in this chapter, read perldoc perlsub .

A subroutine is basically a little self-contained mini-program in the form of block which has a name,
and can take arguments and return values:

the general case

sub name {
BLOCK

}

a specific case

sub print_headers {
print "Programming Perl, 2nd ed\n";
print "by\n";
print "Larry Wall et al.\n";

}

Perl subroutines don’t come with declarations as they do in Cand some other languages. This means
that (usually) you cannot rely on the compiler to verify thatyou have passed your in your arguments
in the correct order, and to ensure that you haven’t missed any. This is an advantage if you wish to be
able to call your subroutine and leave off optional arguments, but it can be surprising at first.

Calling a subroutine
A subroutine can be called in any of the following ways:

print_headers(); # The preferred method.
&print_headers(); # Sometimes necessary.
&print_headers; # An older style (with some dangers).
print_headers; # Ambiguous, can cause problems under stric t.

If (for some reason) you’ve got a subroutine that clashes with one of Perl’s functions you will need
to prefix your function name with& (ampersand) to be perfectly clear. For example:&sort(@array)

if you have your ownsort function, but don’t do that. You should avoid naming your functions after
Perl’s built-in functions because it typically causes moreconfusion than it’s worth. Especially to
whichever poor soul tries to maintain your code.

Be careful of calling your functions in the form &print_headers; as this can result in a rather
surprising effect. For historical reasons, calling your subroutines prepended with an ampersand
and excluding arguments means that the subroutine is passed with an implicit argument list,
which is everything currently in @_. While, occasionally, this may be intentional, writing
print_headers(@_) will make your code much easier for other people to understand.

66 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Subroutines

There are other times when you need to use an ampersand on your subroutine name, such as
when a function needs a SUBROUTINE type of parameter, or when making an anonymous
subroutine reference.

Passing arguments to a subroutine
You can pass arguments to a subroutine by including them in the parentheses when you call it. The
arguments end up in a special array called@_which is only visible inside the subroutine.

Passing in scalars
The most common variable type passed into a subroutine is thescalar.

print_headers("Programming Perl, 2nd ed", "Larry Wall et a l");

my $fiction_title = "Lord of the Rings";
my $fiction_author = "J.R.R. Tolkein";

print_headers($fiction_title, $fiction_author);

sub print_headers {
my ($title, $author) = @_;
print "$title\n";
print "by\n";
print "$author\n";

}

You can take any number of scalars in as arguments - they’ll all end up in@_in the same order you
gave them.

Inside a subroutine, the shift function will by default shift and return arguments from the start of
@_. As such, it’s also very common to see code like this:

sub print_headers {
my $title = shift || "Untitled";
my $author = shift || "Anonymous";
print "$title\n
print "by\n
print "$author\n";

}

One use of this is when you pass a different number of arguments to a function depending on
what you want it to do. Try to avoid shift ing arguments from @_deep down into your subroutine.
Doing this will make it much harder for someone to maintain your code later.

Perl Training Australia (http://perltraining.com.au/) 67

Chapter 9. Subroutines

Passing in arrays and hashes
To pass in a single array or hash to a subroutine, make it the final element in your argument list. For
example:

print_headers($title, $author, @publication_dates);

sub print_headers {
my ($title, $author, @dates) = @_;
print "$title\nby\n$author\n";
if(@dates) { # If we were given any publication dates

print "Printed on: @dates";
}

}

Passing in more than one array or hash causes problems. This is because of list flattening. When Perl
sees a number of items in parentheses these are combined intoone big list.

Flatten two lists into one big list and put that in an array
my @biglist = (@list1, @list2);

Flatten (join) two hashes into one big list an put that in a ha sh
my %bighash = (%hash1, %hash2);

Make a nonsense list and put that in an array:
my @nonsense = (%bighash, @list1, @biglist, 1 .. 4);

Thus if we write the following code, we won’t get the results we want:

my @colours = qw/red blue white green pink/;
my @chosen = qw/red white green/;

print_unchosen(@chosen, @colours);

sub print_unchosen {
my (@chosen, @colours) = @_;

at this point @chosen contains:
(red white green red blue white green pink)
and @colours contains () - the empty list.

}

Once lists have been flattened, Perl is unable to tell where one list stopped and the other started.
Thus when we attempt to separate@chosen and@colours into their original lists,@chosen takes all
the elements and leaves@colours empty. This will happen with hashes too.

We can avoid this problem by using references:

print_unchosen(\@chosen, \@colours);

sub print_unchosen {
my ($chosen, $colours) = @_;

my @chosen = @$chosen;
my @colours = @$colours;

at this point @chosen contains:
(red white green)
and @colours contains (red blue white green pink)

}

however these are beyond the scope of this section.

68 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Subroutines

References will be covered in more depth later in the course. To learn more about them now
read perldoc perlreftut .

Returning values from a subroutine
To return a value from a subroutine, simply use thereturn function.

sub format_headers {
my ($title, $author) = @_;
return "$title\nby\n$author\n\n";

}

sub sum {
my $total = 0;
foreach (@_) {

$total = $total + $_;
}
return $total;

}

These return values could be used as follows:

my $header = format_headers("War and Peace", "Leo Tolstoy");
print $header;

my $total = sum(1..100);
print "$total\n";

my $silly_total = sum($total, length($header));
print "$silly_total\n";

You can also return lists from your subroutine:

subroutine to return the first three arguments passed to it
sub firstthree {

return @_[0..2];
}

my @three_items = firstthree("x", "y", "z", "a", "b");
sets @three_items to ("x", "y", "z");

alternately:
my ($x, $y, $z) = firstthree(4..10); # set $x = 4, $y = 5, $z = 6

Occasionally you might want to return different information based on the context in which
your subroutine was called. For example localtime returns a human-readable time string when
called in scalar context and a list of time information in list context.

To achieve this you can use the wantarray function. To learn more about this, read pg 827 in the
Camel book (pg 241, 2nd Ed) and perldoc -f wantarray .

Perl Training Australia (http://perltraining.com.au/) 69

Chapter 9. Subroutines

Exercises

1. Write a subroutine (print_first_arg) which prints out itsfirst argument.

2. Call your print_first_arg subroutine at least three timesin your script, giving it different
numbers and types of arguments. For example:

print_first_arg(1..10);
print_first_arg(’a’..’e’);

my ($name, $colour) = ("Bob", "yellow");
print_first_arg($name, $colour);

3. One international foot is 0.3048 metres. Write a subroutine (feet_to_metres) that takes a length
in feet, andreturn s the length in metres. Call this subroutine in your code and verify that it
returns what you expect.

print feet_to_metres(1), "\n"; # Should print 0.3048
print feet_to_metres(2), "\n"; # Should print 0.6096

4. Use a loop to call your feet_to_metres subroutine for lengths of 1 foot to 10 feet, to display their
equivalent lengths in metres.

5. You have been hired by the mayor’s office to develop a systemto contact superheroes. Write a
subroutine that returns a standard letter and which acceptsthree arguments: a superhero to
contact, the location they are required, and the threat theymust combat. Use your subroutine to
generate a letter asking Batman to save Gotham City from The Joker.

6. Write a subroutine that takes a list of numbers, and calculates and returns their mean (the sum of
all numbers divided by the count of numbers). Use your subroutine to calculate the mean of the
numbers 1,3,5,7,11,13,17,19.

You’ll find the answers the the above inexercises/answers/subroutines.pl

Chapter summary

• A subroutine is a named block which can be called from anywhere in your Perl program.

• Subroutines can accept parameters, which are available viathe special array@_.

• Arrays and hashes should be passed as the last argument to subroutines. In the case where it is
necessary to pass more than one array or hash to a subroutine references must be used.

• Subroutines can return scalar or list values.

70 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions

In this chapter...
In this chapter we begin to explore Perl’s powerful regular expression capabilities, and use regular
expressions to perform matching and substitution operations on text.

Regular expressions are a big reason of why so many people learn Perl. One of Perl’s most common
uses is string processing and it excels at that because of itsbuilt-in support for regular expressions.

Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2, 2nd Ed) of
the Camel book, and further information is available in the online Perl documentation by typing
perldoc perlre .

What are regular expressions?
The easiest way to explain this is by analogy. You will probably be familiar with the concept of
matching filenames under DOS and Unix by using wild cards -* .txt or /usr/local/ * for instance.
When matching filenames, an asterisk can be used to match any number of unknown characters, and
a question mark matches any single character. There are alsoless well-known filename matching
characters.

Regular expressions are similar in that they use special characters to match text. The differences are
that more powerful text-matching is possible, and that the set of special characters is different.

Regular expressions are also known as REs, regexes, and regexps.

Regular expression operators and functions

m/PATTERN/ - the match operator
The most basic regular expression operator is the matching operator,m/PATTERN/.

• Works on$_ by default.

• In scalar context, returns true (1) if the match succeeds, or false (the empty string) if the match
fails.

• In list context, returns a list of any parts of the pattern which are enclosed in parentheses. If there
are no parentheses, the entire pattern is treated as if it were parenthesised.

• Them is optional if you use slashes as the pattern delimiters.

• If you use themyou can use any delimiter you like instead of the slashes. This is very handy for
matching on strings which contain slashes, for instance directory names or URLs.

• Using the/i modifier on the end makes it case insensitive.

Perl Training Australia (http://perltraining.com.au/) 71

Chapter 10. Regular expressions

while (<>) {
print if m/foo/; # prints if a line contains "foo"
print if m/foo/i; # prints if a line contains "foo", "FOO", et c
print if /foo/i; # exactly the same; the m is optional
print if m#foo#i; # the same again, using different delimite rs
print if /http:\/\//; # prints if a line contains "http://"

suffers from "leaning-toothpick-syndrome".
print if m!http://!; # using ! as an alternative delimiter
print if m{http://}; # using {} as delimiters

}

s/PATTERN/REPLACEMENT/ - the substitution operator
This is the substitution operator, and can be used to find textwhich matches a pattern and replace it
with something else.

• Works on$_ by default.

• In scalar context, returns the number of matches found and replaced.

• In list context, behaves the same as in scalar context and returns the number of matches found and
replaced (a cause of more than one mistake...).

• You can use any delimiter you want, the same as them// operator.

• Using /g on the end of it matches globally, otherwise matches (and replaces) only the first
instance of the pattern.

• Using the/i modifier makes it case insensitive.

fix some misspelled text

while (<>) {
s/freind/friend/g; # Correct freind to friend on entire lin e.
s/teh/the/g;
s/jsut/just/g;
s/pual/Paul/ig; # Correct (case insensitive) all occurren ces

of "pual" (or "Pual" or "PuAl" etc)
print;

}

Exercises

The above example can be found inexercises/spellcheck.pl .

1. Run the spelling check script over theexercises/spellcheck.txt file.

2. There are a few spelling errors remaining. Change your program to handle them as well. An
answer can be found inexercises/answers/spellcheck.pl .

72 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions

Binding operators
If we want to usem// or s/// to operate on something other than$_ we need to use binding
operators to bind the match to another string.

Table 10-1. Binding operators

Operator Meaning

=~ True if the pattern matches

!~ True if the pattern doesn’t match

print "Please enter your homepage URL: ";
my $url = <STDIN>;

if($url !~ /^http:/) {
print "Doesn’t look like a http URL.\n";

}

if ($url =~ /geocities/) {
print "Ahhh, I see you have a geocities homepage!\n";

}

my $string = "The act sat on the mta";
$string =~ s/act/cat/;
$string =~ s/mta/mat/;

print $string; # prints: "The cat sat on the mat";

Easy modifiers
There are several modifiers for regular expressions. We’ve seen two already.

Table 10-2. Regexp modifiers

Modifier Meaning

/i Make match/substitute match case insensitive

/g Make substitute global (all occurrences are
changed)

You can find out about the other modifiers by reading perldoc perlre .

Meta characters
The special characters we use in regular expressions are calledmeta characters, because they are
characters that describe other characters.

Perl Training Australia (http://perltraining.com.au/) 73

Chapter 10. Regular expressions

Some easy meta characters

Table 10-3. Regular expression meta characters

Meta character(s) Matches...

^ Start of string

$ End of string

. Any single character except\n

\n Newline

\t Matches a tab

\s Any whitespace character, such as space, tab, or
newline

\S Any non-whitespace character

\d Any digit (0 to 9)

\D Any non-digit

\w Any "word" character - alphanumeric plus
underscore (_)

\W Any non-word character

\b A word break - the zero-length point between a
word character (as defined above) and a non-word
character.

\B A non-word break - anything other than a word
break.

Any character that isn’t a meta character just matches itself. If you want to match a character that’s
normally a meta character, you can escape it by preceding it with a backslash.

These and other meta characters are all outlined in chapter 5 (chapter 2, 2nd Ed) of the
Camel book and in the perlre manpage - type perldoc perlre to read it.

It’s possible to use the /m and /s modifiers to change the behaviour of the first three meta
characters (^ , $, and .) in the table above. These modifiers are covered in more detail later in the
course.

Under newer versions of Perl, the definitions of spaces, words, and other characters is
locale-dependent. Usually Perl ignores the current locale unless you ask it to do otherwise, so if
you don’t know what’s meant by locale, then don’t worry.

74 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions

Some quick examples:

Perl regular expressions are often found within slashes

/cat/ # matches the three characters
c, a, and t in that order.

/^cat/ # matches c, a, t at start of line

/\scat\s/ # matches c, a, t with spaces on
either side

/\bcat\b/ # Same as above, but won’t
include the spaces in the text
it matches. Also matches if
cat is at the very start or
very end of a string.

we can interpolate variables just like in strings:

my $animal = "dog" # we set up a scalar variable
/$animal/ # matches d, o, g
/$animal$/ # matches d, o, g at end of line

/\$\d\.\d\d/ # matches a dollar sign, then a
digit, then a dot, then
another digit, then another
digit, eg $9.99
Careful! Also matches $9.9999

Quantifiers
What if, in our last example, we’d wanted to say "Match a dollar, then any number of digits, then a
dot, then only two more digits"? What we need are quantifiers.

Table 10-4. Regular expression quantifiers

Quantifier Meaning

? 0 or 1

* 0 or more

+ 1 or more

{n} match exactly n times

{n,} match n or more times

{n,m} match between n and m times

Here are some examples to show you how they all work:

/Mr\.? Fenwick/; # Matches "Mr. Fenwick" or "Mr Fenwick"
/camel. * perl/; # Matches "camel" before "perl" in the

same line.
/\w+/; # One or more word characters.
/x{1,10}/; # 1-10 occurrences of the letter "x".

Perl Training Australia (http://perltraining.com.au/) 75

Chapter 10. Regular expressions

Exercises
For these exercises you may find using the following structure useful:

while(<>) {
chomp;

print "$_ matches!\n" if (/PATTERN/); # put your regexp here
}

This will allow you to specify test files on the command line tocheck against, or to provide input via
STDIN. Hit CTRL -D to finish entering input via STDIN. (Use the key combinationCTRL -Z on
Windows).

You can find the above snippet in:exercises/regexploop.pl .

1. Earlier we mentioned writing a regular expression for matching a price. Write one which
matches a dollar sign, any number of digits, a dot and then exactly two more digits.

Make sure you’re happy with its performance with test cases like the following:12.34 ,
$111.223 , $.24 .

2. Write a regular expression to match the word "colour" witheither British or American spellings
(Americans spell it "color")?

3. How can we match any four-letter word?

Seeexercises/answers/regexp.pl for answers.

Grouping techniques
Let’s say we want to match any lower case character.\w matches both upper case and lower case so
it won’t do what we need. What we need here is the ability to match any characters in agroup.

Character classes
A character class can be used to find a single character that matches any one of a given set of
characters.

Let’s say you’re looking for occurrences of the word "grey" in text, then remember that the
American spelling is "gray". The way we can do this is by usingcharacter classes. Character classes
are specified using square brackets, thus:/gr[ea]y/

We can also use character sequences by saying things like[A-Z] or [0-9] . The sequences\d and\w

can easily be expressed as character classes:[0-9] and[a-zA-Z0-9_] respectively.

Inside a character class some characters take on special meanings. For example, if the first character
is a caret, then the list is negated. That means that[^0-9] is the same as\D --- that is, it matches any
non-digit character.

Here are some of the special rules that apply inside character classes.

• ^ at the start of a character class negates the character class, rather than specifying the start of a
line.

76 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions

• - specifies a range of characters. If you wish to match a literal-, it must be either the first or the
last character in the class.

• $. () {} * + and other meta characters taken literally.

Exercises

Your instructor will help you do the following exercises as agroup.

1. How would we find any word starting with a letter in the first half of the alphabet, or with X, Y,
or Z?

2. What regular expression could be used for any word that starts with lettersother than those
listed in the previous example.

3. There’s almost certainly a problem with the regular expression we’ve just created - can you see
what it might be?

Alternation
The problem with character classes is that they only match one character. What if we wanted to
match any of a set of longer strings, like a set of words?

The way we do this is to use the pipe symbol| for alternation:

/rabbit|chicken|dog/ # matches any of our pets

The pipe symbol (also called vertical bar) is often found on the same key as \ .

However this will match a number of things we might not intendit to match. For example:

• rabbiting

• chickenhawk

• hotdog

We need to specify that we want to only match the word if it’s ona line by itself.

Now we come up against another problem. If we write somethinglike:

/^rabbit|chicken|dog$/

to match any of our pets on a line by itself, it won’t work quiteas we expect. What this actually says
is match a string that:

• starts with the string "rabbit" or

• has the string "chicken" in it or

• ends with the string "dog"

This will still match the three incorrect words above, whichis not what we intended. To fix this, we
enclose our alternation in round brackets:

Perl Training Australia (http://perltraining.com.au/) 77

Chapter 10. Regular expressions

/^(rabbit|chicken|dog)$/

Finally, we will now only match any of our pets on a line, by itself.

Alternation can be used for many things including selectingheaders from emails for printing out:

a simple matching program to get some email headers and prin t them out

while (<>) {
print if /^(From|Subject|Date):\s/;

}

The above email example can be found inexercises/mailhdr.pl .

The concept of atoms
Round brackets bring us neatly into the concept of atoms. Theword "atom" derives from the Greek
atomosmeaning "indivisible" (little did they know!). We use it to mean "something that is a chunk of
regular expression in its own right".

Atoms can be arbitrarily created by simply wrapping things in round brackets --- handy for
indicating grouping, using quantifiers for the whole group at once, and for indicating which bit(s) of
a matching function should be the returned value.

In the example used earlier, there were three atoms:

1. start of line

2. rabbit or chicken or dog

3. end of line

How many atoms were there in our dollar prices example earlier?

Atomic groupings can have quantifiers attached to them. For instance:

match four words (without punctuation)
/(\b\w+\s *){4}/;

match three or more words starting with "a" in a row
eg "all angry animals"
/(\ba\w+\s *){3,}/;

match a consonant followed by a vowel twice in a row
eg "tutu" or "tofu"
/([^\W\d_aeiou][aeiou]){2}/;

Exercises

1. Determine whether your name appears in a string (an answer’s in
exercises/answers/namere.pl).

2. What pattern could be used to match a blank line? (Answer:
exercises/answers/blanklinere.pl)

78 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions

3. Remove footnote references (like [1]) from some text (seeexercises/footnote.txt for some
sample text, andexercises/answers/footnote.pl for an answer). (Hint: have a look at the
footnote text to determine the forms footnotes can take).

4. Write a script to search a file for any of the names "Yasser Arafat", "Boris Yeltsin" or "Paul
Keating". Print out any lines which contain these names. Youcan find a file including these
names and others inexercises/famous_people.txt . (Answer:
exercises/answers/namesre.pl)

5. What pattern could be used to match any of: Elvis Presley, Elvis Aron Presley, Elvis A. Presley,
Elvis Aaron Presley. You can find a test file inexercises/elvis.txt . (Answer:
exercises/answers/elvisre.pl)

6. What pattern could be used to match an IP address such as192.168.53.124 , where each part of
the address is a number from 0 to 255? (Answer:exercises/answers/ipre.pl)

Chapter summary

• Regular expressions are used to perform matches and substitutions on strings.

• Regular expressions can include meta-characters (characters with a special meaning, which
describe sets of other characters) and quantifiers.

• Character classes can be used to specify any single instanceof a set of characters.

• Alternation may be used to specify any of a set of sub-expressions.

• The matching operator ism/PATTERN/ and acts on$_ by default.

• The substitution operator iss/PATTERN/REPLACEMENT/and acts on$_ by default.

• Matches and substitutions can be performed on strings otherthan$_ by using the=~ (and!~)
binding operator.

Perl Training Australia (http://perltraining.com.au/) 79

Chapter 10. Regular expressions

80 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data
structures

In this chapter...
In this chapter, we look at Perl’s powerful reference syntaxand how it can be used to implement
complex data structures such as multi-dimensional lists, hashes of hashes, and more.

Assumed knowledge
It is assumed that you have a good understanding of Perl’s data types: scalars, arrays, and hashes.
Prior experience with languages which use pointers or references is helpful, but not required.

Introduction to references
Perl’s basic data type is thescalar. Arrays and hashes are made up of scalars, in one- or
two-dimensional lists. It is not possible for an array or hash to be a member of another array or hash
under normal circumstances.

However, there is one thing about an array or hash which is scalar in nature -- its memory address.
This memory address can be used as an item in an array or list, and the data extracted by looking at
what’s stored at that address. This is what a reference is.

The following sources also provide useful and comprehensive information about references:

• Chapter 8 (chapter 4, 2nd Ed) of the Camel book, and in perldoc perlref .

• Chapter 1 of Advanced Perl Programming (O’Reilly’s Panther book).

Uses for references
There are three main uses for Perl references.

Creating complex data structures
Perl references can be used to create complex data structures, for instance hashes of arrays, arrays of
hashes, hashes of hashes, and more.

Perl Training Australia (http://perltraining.com.au/) 81

Chapter 11. References and complex data structures

Passing arrays and hashes to subroutines and functions
Since all arguments to subroutines are flattened to a list of scalars, it is not possible to use two arrays
as arguments and have them retain their individual identities.

my @a1 = qw(a b c);
my @a2 = qw(d e f);

printargs(@a1, @a2);

sub printargs {
print "@_\n";

}

The above example will print outa b c d e f .

References can be used in these circumstances to keep arraysand hashes passed as arguments
separate.

Object oriented Perl
References are used extensively in object oriented Perl. Infact, Perl objectsare references to data
structures.

Creating and dereferencing references
To create a reference to a scalar, array or hash, we prefix its name with a backslash:

my $scalar = "This is a scalar";
my @array = qw(a b c);
my %hash = (

’sky’ = > ’blue’,
’apple’ = > ’red’,
’grass’ = > ’green’,

);

my $scalar_ref = \$scalar;
my $array_ref = \@array;
my $hash_ref = \%hash;

Note that all references are scalars, because they contain asingle item of information: the memory
address of the actual data. This is what a reference looks like if you print it out:

print $scalar_ref; # prints SCALAR(0x80c697c)
print $array_ref; # prints ARRAY(0x80c6988)
print $hash_ref; # prints HASH(0x80c6988)

You can find out whether a scalar is a reference or not by using theref() function, which returns a
string indicating the type of reference, or undef if the scalar is not a reference.

print ref($scalar_ref); # prints SCALAR
print ref($array_ref); # prints ARRAY
print ref($hash_ref); # prints HASH

82 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data structures

The ref() function is documented on page 773 (page 204, 2nd Ed) of the Camel book or in
perldoc -f ref .

Dereferencing (getting at the actual data that a reference points to) is achieved by prepending the
appropriate sigil to the name of the reference. For instance, if we have a hash reference
$hash_reference we can dereference it by adding a percentage sign:%$hash_reference .

my $new_scalar = $$scalar_ref;
my @new_array = @$array_ref;
my %new_hash = %$hash_ref;

Here’s one way to access array elements or slices, and hash elements:

print $$array_ref[0]; # prints the first element of the arra y
referenced by $array_ref: a

print @$array_ref[1,2]; # prints an array slice: b, c
print $$hash_ref{’sky’}; # prints a hash element’s value: b lue

The other way to access the value that a reference points to isto use the "arrow" notation. This
notation is usually considered to be better Perl style than the one shown above, which can have
precedence problems and is less visually clean.

print $array_ref- >[0]; # prints the first element of the array
referenced by $array_ref: a

print $hash_ref- >{’sky’}; # prints a hash element’s value: blue

The notation here is exactly the same as selecting elements from an array or hash, except that an
arrow is inserted between the variable name and the element to fetch. So where$foo[1] gets the first
(ie, position 2) element from the array@foo, $foo- >[1] gets the first element from the array pointed
to by the reference$foo .

It’s not possible to get an array or hash slice using arrow notation.

Taking an array slice of a single element from an array reference does not result in a warning
from Perl, although it’s certainly not recommended. Perl does however try to be helpful in this
case and returns the scalar referred to by the array slice, rather than the length of the array slice
which would be 1.

my $value = @$array_ref[0]; # Oops, this should be $$array_r ef[0];
print $value; # Prints ’a’ as desired but is not obvious

Exercises

1. Create an array called@friends , and populate it with the name of some of your friends.

2. Create a reference to your array called$friends_ref . Using this reference, print the names of
three of your friends.

Perl Training Australia (http://perltraining.com.au/) 83

Chapter 11. References and complex data structures

Assigning through references
Assigning values to the underlying array or hash through a reference is much the same as accessing
the value:

my @trees = qw/lemon orange grapefruit/;
my $tree_ref = \@trees;

$tree_ref->[3] = ’mandarin’;
print "@trees"; # prints "lemon orange grapefruit mandarin "

my %fruit = (
kumquat => "sour",
orange => "sweet",
lemon => "sour",
mandarin => "sweet"

);

my $fruit_ref = \%fruit;

$fruit_ref->{grapefruit} = "sour and sweet";

Passing multiple arrays/hashes as arguments
When we pass multiple arrays to a subroutine they are flattened out to form one large array.

my @colours = qw/red blue white green pink/;
my @chosen = qw/red white green/;

print_unchosen(@chosen, @colours);

sub print_unchosen {
my (@chosen, @colours) = @_;

at this point @chosen contains:
(red white green red blue white green pink)
and @colours contains () - the empty list.

}

If we want to keep them separate, we need to pass in referencesto the arrays instead:

ref_print_unchosen(\@chosen, \@colours);

sub ref_print_unchosen {
my ($chosen_ref, $colours_ref) = @_;

print "Chosen list:\n";
foreach (@$chosen_ref) {

print "$_\n";
}
print "Colour list:\n";
foreach (@$colours_ref) {

print "$_\n";
}

}

When we pass references into a subroutine we’re allowing that subroutine full access to the structure
that the reference refers to. All changes that the subroutine makes to that structure will remain after

84 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data structures

the subroutine has returned. If you wish to make a copy of the structure that the reference refers to
and modify that locally, you can do the following:

sub ref_print_unchosen {
my ($chosen_ref, $colours_ref) = @_;

my @chosen = @$chosen_ref; # this @chosen is now a copy
my @colours = @$colours_ref; # this @colours is now a copy

}

The above paragraph discusses a concept that is often referred to as call by reference. Typically
when we call Perl subroutines we consider them to be called by value. Technically, however, this
is incorrect.

In the case where we pass scalars into a subroutine, we usually shift them from @_or we copy
the contents from @_into another list. However if we instead modify the contents of @_directly we
will actually be modifying the contents of the variables given to the subroutine.

We don’t recommend this practice, however, as it makes your code much harder for other
people to maintain. It’s much better to do something like the following:

($x, $y) = modify($x, $y);

If you do use call by reference be careful, as it’s a fatal error to attempt to modify a read-only
value, such as a literal string.

Anonymous data structures
We can use anonymous data structures to create complex data structures without having to declare
many temporary variables. Anonymous arrays are created by using square brackets instead of round
ones. Anonymous hashes use curly braces instead of round ones.

the old two-step way:
my @array = qw(a b c d);
my $array_ref = \@array;

if we get rid of $array_ref, @array will still hang round usi ng up
memory. Here’s how we do it without the intermediate step, b y
creating an anonymous array:

my $array_ref = [’a’, ’b’, ’c’, ’d’];

look, we can still use qw() too...

my $array_ref = [qw(a b c d)];

more useful yet, we can put these anon arrays straight into a hash:

my %transport = (
’cars’ = > [qw(toyota ford holden porsche)],
’planes’ = > [qw(boeing harrier)],
’boats’ = > [qw(clipper skiff dinghy)],

);

The same technique can be used to create anonymous hashes:

Perl Training Australia (http://perltraining.com.au/) 85

Chapter 11. References and complex data structures

The old, two-step way:
my %hash = (

a => 1,
b => 2,
c => 3

);
my $hash_ref = \%hash;

the quicker way, with an anonymous hash:
my $hash_ref = {

a => 1,
b => 2,
c => 3

};

Data is pulled out of an anonymous data structure using the arrow notation:

print $hash_ref->{a}; # prints "1";

Exercise

1. Change your previous program to initialise$friends_ref using an anonymous array
constructor. You should no longer need your original@friends array. Test that your program
still works.

Complex data structures

You can find more about complex data structures in Appendix C and also by reading both
perldoc perldsc and perldoc perllol .

References are most often used to create complex data structures. Since references are scalars, they
can be used as values in both hashes and arrays. This makes it possible to create both deep and
complex multi-dimensional data structures. These are covered more deeply in Appendix C.

The use of references in data structures allows you to createarrays of arrays, arrays of hashes, hashes
of arrays and hashes of hashes. We saw an example of a hash of arrays in the previous section. Here
is an example of an array of hashes:

my %alice = (
name => "Alice Jane",
age => 34,
employeenumber => 12003,

);
my %bob = (

name => "Bob Jane",
age => 32,
employeenumber => 12345,

);

86 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data structures

my @employees = (
\%alice,
\%bob,

);

to print out Alice’s employee number:
print $employees[0]->{employeenumber};

Or, to use anonymous data structures
my @employees2 = (

{
name => "Alice Jane",
age => 34,
employeenumber => 12003,

},
{

name => "Bob Jane",
age => 32,
employeenumber => 12345,

},
);

to print out Bob’s age:
print $employees2[1]->{age};

Exercises
There is a starter file for these exercises inexercises/food_starter.pl . You may also find it useful
to read Appendix C.

1. Create data structures as follows:

a. Create a hash called%pasta_prices which contains prices for small, medium and large
serves of pasta.

b. Create a hash called%milkshake_prices which contains prices for small, medium and
large milkshakes.

c. Create a hash called%menucontaining references to the above hashes, so that given a type of
food and a size you can find the price of it. Don’t forget that your hash must contain both
keys (the type of food), and values (a reference to the data structure containing the prices).

2. Print out the cost of a large pizza by referencing your%menuhash.

3. Code already exists to accept the food-type and size from the user. Change the print line so that
it prints the correct price for that food choice.

4. Convert the menu hash to use anonymous data structures (a hash of hashes) instead of the
original three pizza, pasta and milkshake hashes. Check that your customer code works with this
change.

5. Add a new element to your foods hash which contains the prices of salads. Rather than adding
this in when you create the hash, instead add it separately.

6. Create a subroutine which can be passed a scalar and a hash reference. Check whether there is
an element in the hash which has the scalar as its key. Hint: use exists for this.

Answers for the above exercises can be found inexercises/answers/food.pl .

Perl Training Australia (http://perltraining.com.au/) 87

Chapter 11. References and complex data structures

Disambiguation and curly braces
Often in our code, we need to treat a reference as its underlying data structure. For a simple
reference, this is easy; we prepend the reference with the appropriate sigil and it just works:

my $hashref = { a => 1, b => 2, c => 4, d => 8 };

foreach (keys %$hashref) {
...

}

What can cause us problems is when the reference isn’t so simple. What should Perl do, in the
following case?

my @result = @$array[0];

Does this mean:

• Find @array .

• Look up index0: $array[0]

• Turn that ($array[0]) into an array:@$array[0]

or:

• Find the array reference$array

• Treat that as an array:@$array

• Take an array slice with index0: @$array[0]

Perl does the latter, however if that is what we wanted then weshould have written$$array[0] , as
that explicitly returns a single (scalar) result.

We can force Perl to evaluate our expression as the first interpretation above by using curly braces.
This allows us to clearly write:

my @result = @{$array[0]};

We can use${...} , @{...} or %{...} syntax to evaluate any expression and dereference the result.

Data::Dumper
Typically, to print out a data structure you have to understand its underlying structure and then write
a number of loops to print it out in full. If the structure is relatively simple such as a hash of hashes
of values, or even a hash of hash of arrays this isn’t too difficult.

However, often data structures are very complex, and negotiating and printing these structures can be
a tiresome exercise. It’s also an unnecessary one, as all thehard work has already been done for you.
To save you from having to write specialised printing code inevery program for debugging purposes,
there’s a special library you may find useful calledData::Dumper .

Data::Dumper provides a function which takes Perl data structures and turns them into human
readable strings representing the data with in them. It can be used just like this:

88 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data structures

use Data::Dumper;

my %HoH = (
Jacinta => {

age => 26,
favourite_colour => "blue",
sport => "swimming",
language => "Perl",

},

Paul => {
age => 27,
favourite_colour => "green",
sport => "cycling",
language => "Perl",

},
);

print Dumper \%HoH;

This will print out something similar to:

$VAR1 = {
’Paul’ => {

’language’ => ’Perl’,
’favourite_colour’ => ’green’,
’sport’ => ’cycling’,
’age’ => 27

},
’Jacinta’ => {

’language’ => ’Perl’,
’favourite_colour’ => ’blue’,
’sport’ => ’swimming’,
’age’ => 26

}
};

Not only is this easy to read, but it’s also perfectly valid Perl code. This means you can use
Data::Dumper to easily give you a structure that you can paste into anotherprogram, or which can be
’serialised’ to a file and re-created at a later date.Data::Dumper has a lot more uses beyond simple
debugging.

Dumper expects to be given one or more references to data structuresto dump. IfDumper is provided
with a hash or array then every element of the array, or every key and value of the hash, will be
considered a separate data structure, and dump separately.The results are not particularly useful:

result of: print Dumper %HoH;
$VAR1 = ’Paul’;
$VAR2 = {

’language’ => ’Perl’,
’favourite_colour’ => ’green’,
’sport’ => ’cycling’,
’age’ => 27

};
$VAR3 = ’Jacinta’;
$VAR4 = {

’language’ => ’Perl’,
’favourite_colour’ => ’blue’,
’sport’ => ’swimming’,
’age’ => 26

};

Perl Training Australia (http://perltraining.com.au/) 89

Chapter 11. References and complex data structures

You can read more about Data::Dumper on page 882 of the Camel book or in perldoc
Data::Dumper .

Exercises

1. UseData::Dumper to print out your data structures from the previous exercise.

2. Useperldoc Data::Dumper to read aboutData::Dumper ’s many options and configuration
variables.

Chapter summary

• References are scalar data consisting of the memory addressof a piece of Perl data, and can be
used in arrays, hashes, and other places where you would use anormal scalar

• References can be used to create complex data structures, topass multiple arrays or hashes to
subroutines, and in object-oriented Perl.

• References are created by prepending a backslash to a variable name.

• References are dereferenced by replacing the name part of a variable name (egfoo in $foo) with a
reference, for example replacefoo with $foo_ref to get$$foo_ref

• References to arrays and hashes can also be dereferenced using the arrow- > notation.

• References can be passed to subroutines as if they were scalars.

• References can be included in arrays or hashes as if they werescalars.

• Anonymous arrays can be made by using square brackets instead of round; anonymous hashes can
be made by using curly brackets instead of round. These can beassigned directly to a reference,
without any intermediate step.

• Data::Dumper allows complex data structures to be printed out verbatim without requiring full
knowledge of the underlying data structure.

90 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. External Files and Packages

In this chapter...
In this chapter we’ll discuss how we can split our code into separate files. We’ll discover Perl’s
concept of packages, and how we can use them to make our code more robust and flexible.

Splitting code between files
When writing small, independent programs, the code can usually be contained within a single file.
However there are two common occurrences where we would liketo have our programs span
multiple files. When working on a large project, often with many developers, it can be very
convenient to split a program into smaller files, each with a more specialised purpose. Alternatively,
we may find ourselves working on many programs that share somecommon code base. This code
can be placed into a separate file which can be shared across programs. This saves us time and effort,
and means that bug-fixes and improvements need to be made onlyin a single location.

Require
Perl implements a number of mechanisms for loading code fromexternal files. The most simplest of
these is by using therequire function:

require ’file.pl’;

Perl is smart enough to make sure that the same file will not be included twice if it’s required through
the same specified name.

The file is only included once in the following case:
require ’file.pl’;
require ’file.pl’;

Required filesmustend with a true value. This is usually achieved by having the final statement of
the file being:

1;

Conflicts can occur if our included file declares subroutines with the same name as those that
appear in our main program. In most circumstances the subroutine from the included file takes
precedence, and a warning is given.

We will learn how to avoid these conflicts later in this chapter when we discuss the concept of
packages.

Perl Training Australia (http://perltraining.com.au/) 91

Chapter 12. External Files and Packages

The use of require has been largely deprecated by the introduction of modules and the use

keyword. If you’re writing a code library from scratch we recommend that you create it as a
module. However, require is often found in legacy code and is a useful thing to understand.

Any code in the file (except for subroutines) will be executed immediately when the file is
required. The require occurs at run-time, this means that Perl will not throw an error due to a
missing file until that statement is reached, and any subroutines inside the file will not be
accessible until after the require .

Variables declared with my are not shared between files, they are only visible inside the block or
file where the declaration occurs. To share packages between files we use package variables
which are covered later in this chapter.

The use of modules (which we will learn about later) allows for external files to be loaded at
compile-time, rather than run-time.

Use strict and warnings
Perl pragmas, such asstrict andwarnings are lexically scoped. Just like variables declared with
my, they last until the end of the enclosing block, file or eval.

This means that you can turn strict and warnings on in one file without it influencing other parts of
your program. Thus, if you’re dealing with legacy code, thenyour new libraries, modules and classes
can be strict and warnings compliant even though the older code is not.

Example
The use ofrequire is best shown by example. In the following we specify two files, Greetings.pl

andprogram.pl . Both are valid Perl programs on their own, although in this case,Greetings.pl

would just declare a variable and a subroutine, and then exit. As we do not intend to execute
Greetings.pl on its own, it does not need to be made executable, or include ashebang line.

Our library code, to be included.

Greetings.pl
Provides the hello() subroutine, allowing for greetings
in a variety of languages. English is used as a default
if no language is provided.

use strict;
use warnings;

my %greeting_in = (
en => "Hello",
’en-au’ => "G’day",
fr => "Bonjour",
jp => "Konnichiwa",
zh => "Nihao",

);

92 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. External Files and Packages

sub hello {
my $language = shift || "en";

my $greeting = $greeting_in{$language}
or die "Don’t know how to greet in $language";

return $greeting;
}

1;

Our program code.

program.pl
Uses the Greetings.pl file to provide another hello() subr outine
use strict;

Get the contents from file.pl
require "Greetings.pl";

print "English: ", hello("en"), "\n"; # Prints "Hello"
print "Australian: ", hello("en-au"),"\n"; # Prints "G’da y"

Exercises

1. Create a file calledMyTest.pl Define at least two subroutines;pass andfail which print some
amusing output. Make sure that it usesstrict .

2. Test that your code compiles by runningperl -c MyTest.pl. (The-c tells Perl to check your
code).

3. Create a simple Perl script which requiresMyTest.pl and calls the functions defined within.

Introduction to packages
The primary reason for breaking code into separate files is toimprove maintainability. Smaller files
are easier to work with, can be shared between multiple programs, and are suitable for dividing
between members of large teams. However they also have theirproblems.

When working with a large project, the chances of naming conflicts increases. Two entirely different
files may have two different subroutines with the same name; however it is only the last one loaded
that will be used by Perl. Files from different projects may be re-used in new developments, and
these may have considerable name clashes. Multiple files canalso make it difficult to determine
where subroutines are originally declared, which can make debugging difficult.

Perl’spackagesare designed to overcome these problems. Rather than just putting code into separate
files, code can be placed into independent packages, each with its own namespace. By ensuring that
package names remain unique, we also ensure that all subroutines and variables can remain unique
and easily identifiable.

A single file can contain multiple packages, but convention dictates that each file contains a package
of the same name. This makes it easy to quickly locate the codein any given package.

Perl Training Australia (http://perltraining.com.au/) 93

Chapter 12. External Files and Packages

Writing a package in Perl is easy. We simply use thepackage keyword to change our current
package. Any code executed from that point until the end of the current file or block is done so in the
context of the new package.

By declaring that all our code is in the "Greetings" package ,
we can be certain not to step on anyone else’s toes, even if
they have written a hello() subroutine.

package Greetings;

use strict;
use warnings;

my %greeting_in = (
en => "Hello",
’en-au’ => "G’day",
fr => "Bonjour",
jp => "Konnichiwa",
zh => "Nihao",

);

sub hello {
my $language = shift || "en";

my $greeting = $greeting_in{$language}
or die "Don’t know how to greet in $language";

return $greeting;
}

1;

The package that you’re in when the Perl interpreter starts (before you specify any package) is called
main . Package declarations use the same rules asmy, that is, it lasts until the end of the enclosing
block, file, or eval.

Perl convention states that package names (or each part of a package name, if it contains many parts)
starts with a capital letter. Packages starting with lower-case are reserved for pragmas (such as
strict).

The scoping operator
Being able to use packages to improve the maintainability ofour code is important, but there’s one
important thing we have not yet covered. How do we use subroutines, variables, or filehandles from
other packages?

Perl provides ascoping operatorin the form of a pair of adjacent colons. The scoping operator
allows us to refer to information inside other packages, andis usually pronounced "double-colon".

require "Greetings.pl";

Greetings in English.
print Greetings::hello("en"),"\n";

Greetings in Japanese.
print Greetings::hello("jp"),"\n";

This calls the hello() subroutine in our main package
(below), printing "Greetings Earthling".
print hello(),"\n";

94 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. External Files and Packages

sub hello {
return "Greetings Earthling";

}

Calling subroutines like this is a perfectly acceptable alternative to exporting them into your own
namespace (which we’ll cover later). This makes it very clear where the called subroutine is located,
and avoids any possibility of an existing subroutine clashing with that from another package.

Occasionally we may wish to change the value of a variable in another package. It should be very
rare that we should need to do this, and it’s not recommended you do so unless this is a documented
feature of your package. However, in the case where we do needto do this, we use the scoping
operator again.

use Carp;

Turning on $Carp::Verbose makes carp() and croak() provid e
stack traces, making them identical to cluck() and confess ().
This is documented in ’perldoc Carp’.

$Carp::Verbose = 1;

There’s a shorthand for accessing variables and subroutines in themain package, which is to use
double-colon without a package name. This means that$::foo is the same as$main::foo .

When referring to a variable in another package, the sigil (punctuation denoting the variable
type) always goes before the package name. Hence to get to the scalar $bar in the package Foo,
we would write $Foo::bar and not Foo::$bar .

It is not possible to access lexically scoped variables (those created with my) in this way.
Lexically scoped variables can only be accessed from their enclosing block.

Package variables and our
It is not possible to access lexically scoped variables (those created withmy) outside of their
enclosing block. This means that we need another way to create variables to make them globally
accessible. These global variables are calledpackage variables, and as their name suggests they live
inside their current package. The preferred way to create package variables, under Perl 5.6.0 and
above, is to declare them with theour statement. Of course, there are alternatives you can use with
older version of Perl, which we also show here:

package Carp;

our $VERSION = ’1.01’; # Preferred for Perl 5.6.0 and above

use vars qw/$VERSION/; # Preferred for older versions
$VERSION = ’1.01’;

$Carp::VERSION = ’1.01’; # Acceptable but requires that we then
always use this full name under strict

In all of the cases above, both our package and external code can access the variable using
$Carp::VERSION .

Perl Training Australia (http://perltraining.com.au/) 95

Chapter 12. External Files and Packages

Exercises

1. Change yourMyTest.pl file to include a package nameMyTest

2. Update your program to call the MyTest functions using thescoping operator.

3. Create a package variable$PASS_MARKusingour insideMyTest.pl which defines an appropriate
pass mark.

4. In your Perl script, create a loop which tests 10 random numbers for pass or fail with reference
to the$PASS_MARKpackage variable. Print the appropriatepass or fail message.

5. Print out the version of theCwdmodule installed on your training server. The version number is
in $Cwd::VERSION . (You will need touse Cwd; first.)

6. Look at the documentation for theCarp module using theperldoc Carp command. This is one
of Perl’s most frequently used modules.

Answers for the above exercises can be found inexercises/answers/MyTest.pl and
exercises/answers/packages.pl .

Chapter summary

• A package is a separate namespace within Perl code.

• A file can have more than one package defined within it.

• The default package ismain .

• We can get to subroutines and variables within packages by using the double-colon as a scoping
operator for exampleFoo::bar() calls thebar() subroutine from theFoo

• To write a package, just writepackage package_name where you want the package to start.

• Package declarations last until the end of the enclosing block, file or eval (or until the next
package statement).

• Package variables can be declared with theour keyword. This allows them to be accessed from
inside other packages.

• Therequire keyword can be used to import the contents of other files for use in a program.

• Files which are included usingrequire must end with a true value.

96 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

In this chapter...
In this chapter we’ll discuss modules from a user’s standpoint. We’ll find out what a module is, how
they are named, and how to use them in our work.

In the remainder of the chapter, we will investigate how to write our own modules.

Module uses
Perl modules can do just about anything. In general, however, there are three main uses for modules:

• Changing how the rest of your program is interpreted. For example, to enforce good coding
practices (use strict) or to allow you to write in other languages, such as Latin (use

Lingua::Romana::Perligata), or to provide new language features (use Switch).

• To provide extra functions to do your work (use Carp or use CGI qw/:standard/).

• To make available new classes (use HTML::Template or use Finance::Quote) for object oriented
programming.

Sometimes the boundaries are a little blurred. For example,theCGI module provides both a class and
the option of extra subroutines, depending upon how you loadit.

What is a module?
A module is a separate file containing Perl source code, whichis loaded and executed at compile
time. This means that when you write:

use CGI;

Perl looks for a file calledCGI.pm (.pm forPerl Module), and upon finding it, loads it in and executes
the code inside it, before looking at the rest of your program.

Sometimes you need to tell Perl where to look for your Perl modules, especially if some of
them are installed in a non-standard place. Like many things in Perl, There’s More Than One
Way To Do It. Check out perldoc -q library for some of the ways to tell Perl where your modules
are installed.

Sometimes you might choose to pass extra information to the module when you load it. Often this is
to request the module create new subroutines in your namespace.

use CGI qw(:standard);
use File::Copy qw(copy);

Note the use ofqw() , this is a list of words (in our case, just a single word). It’spossible to pass
many options to a module when you load it. In the case above, we’re asking theCGI module for the
:standard bundle of functions, and theFile::Copy module for just thecopy subroutine.

Perl Training Australia (http://perltraining.com.au/) 97

Chapter 13. Modules

Each module has a different set of options (if any) that it will accept. You need to check the
documentation of the module you’re dealing with to which (if any) are applicable to your needs.

To find out what options exist on any given module read its documentation: perldoc module_name.

The double-colon
Sometimes you’ll see modules with double-colons in their names, likeFinance::Quote ,
Quantum::Superposition , or CGI::Fast . The double-colon is a way of grouping similar modules
together, in much the way that we use directories to group together similar files. You can think of
everything before the double-colon as the category that themodule fits into.

In fact, the file analogy is so true-to-life that when Perl searches for a module, it converts all
double-colons to your directory separator and then looks for that when trying to find the appropriate
file to load. SoFinance::Quote looks for a file namedQuote.pm in a directory calledFinance . That
two modules are in the same category doesn’t necessarily mean that they’re related in any way. For
example,Finance::Quote andFinance::QuoteHist have very similar names, and their maintainers
even enjoy very similar hobbies, they certainly have similar uses, but neither package shares any
code in common with the other.

It’s perfectly legal to have many double-colon separators in module names, so
Chicken::Bantam::SoftFeather::Pekin is a perfectly valid module name.

Exercise

1. UsingFile::Copy make a copy of one of your files. If you’re eager, ask the user which file to
copy and what to name the copy.

Where does Perl look for modules?
Perl searches through a list of directories that are determined when the Perl interpretor is compiled.
You can see this list (and all the other options Perl was compiled with), by usingperl -V .

The list of directories which Perl searches for modules is stored in the special variable@INC. It’s
possible to change@INCso that Perl will search in other directories as well. This isimportant if you
have installed your own private copy of some modules.

Of course, being Perl, there’s more than one way to change@INC. Here are some of the ways to add
to the list of directories inside@INC:

• Call Perl with the-I command-line switch with the location of the extra directory to search. This
can be done either in the shebang line, or on the command-line. For example:

perl -I/path/to/libs

• Use thelib pragma in your script to inform Perl of extra directories. For example:

use lib "/path/to/libs";

98 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

• Setting thePERL5LIB environment variable with a colon-separated list of directories to search.
Note that if your script is running with taint checks this environment variable is ignored.

Sinceuse statements occur before regular Perl code is executed, modifying @INCdirectly usually
does not have the desired effect.

Finding installed modules
Perl comes with many modules in its standard distribution. You can get a list of all of them by doing
a perldoc perlmodlib. The Camel book describes the standard modules in chapters 31 and 32
(chapter 7, 2nd Ed).

Besides from the modules in the standard distribution, you can also see other modules that
were manually installed on your system by using perldoc perllocal . Generally this file only lists
other modules that were installed by hand, or using one of the CPAN installers (more on this
later). Modules installed through your operating system’s packaging system may not appear in
perldoc perllocal .

To find a complete list of modules available on your system, regardless of how they were
installed, read the documentation provided by perldoc -q installed .

You can get more information on any module that you have installed by usingperldoc module_name.
For example,perldoc Englishwill give you information about theEnglish module. You can also
useperldoc -l module_name to locate a particular module, andperldoc -m module_name to view the
source of a module.

Most importantly, there’s a great resource for finding modules called theComprehensive Perl
Archive Network, or CPAN for short. The CPAN website (http://www.cpan.org/) provides many
ways of finding the modules you’re after and browsing their documentation on-line. It’s highly
recommended that you become familiar with CPAN’s search features, as many common problems
have been solved and placed in CPAN modules.

Exercise

1. Open a web browser to CPAN’s search site (http://search.cpan.org) and spend a few minutes
browsing the categories provided.

2. Perform a search on CPAN for a problem domain of your choice. If you can’t think of one,
search onCGI, XMLor SOAP.

Using CPAN modules
CPAN provides more than 9,000 separate and freely availablemodules. This makes CPAN an
excellent starting point when you wish to find modules to helpsolve your particular problem.
However, you should keep in mind that not all CPAN modules arecreated equal. Some are much
better documented and written than others. Some (such as theCGI or DBI) modules have become
de-facto standards, whereas others may not be used by anyoneexcept the module’s author.

Perl Training Australia (http://perltraining.com.au/) 99

Chapter 13. Modules

As with any situation when you’re using third party code, youshould take the time to determine the
suitability of any given module for the task at hand. However, in almost all circumstances it’s better
to use or extend a suitable module from CPAN rather than trying to re-invent the wheel.

Many of the popular CPAN modules are pre-packaged for popular operating systems. In addition,
theCPANmodule that comes with Perl can make the task of finding and installing modules from
CPAN much easier.

Most CPAN modules come withREADMEand/orINSTALL files which tell you how to install the
modules. This may vary between operating systems. On Unix and Unix-like operating systems the
process is usually:

perl Makefile.PL
make
make test
make install

For ActiveState Perl installations (which includes most Microsoft Windows machines) the use of
PPM (Programmer’s Package Manager) is recommended. PPM provides a command line interface
for downloading and installing pre-compiled versions of most CPAN modules.

Some times you may not find the module you’re looking for through PPM. In this case you may
want to build your own. The process for this is similar to thatfor Unix machines, although instead of
usingmake you will need to usenmake which is amake equivalent made by Microsoft. Some Perl
modules also require a C compiler.

Some times you may not be able to, or may not wish to, install CPAN modules in their default
path. In this case you can provide a flag to the Makefile.PL program instructing it on your
preferred top level directory. For example:

perl Makefile.PL PREFIX=/home/sue/perl/

If you install your module in a different directory than your other Perl modules you may have to
use the lib pragma, mentioned in the previous section, to tell Perl where to find your files. Once
a module is installed, you can use it just like any other Perl module.

For coverage on installing modules on various operating systems read perldoc perlmodlib .
If you want to distribute your own modules read perldoc perlnewmod .

Writing modules
Modules contain regular Perl code, and for most modules the vast majority of that code is in
subroutines. Sometimes there are a few statements which initialise variables and other things before
any of those subroutines are called, and those get executed immediately. The subroutines get
compiled and tucked away for later use.

Besides from the code that’s loaded and executed, two more special things happen. Firstly, if the last
statement in the module did not evaluate to true, the Perl compiler throws an exception (usually
halting your program before it even starts). This is so that amodule could indicate that something

100 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

went wrong, although in reality this feature is almost neverused. Virtually any Perl module you care
to look at will end with the statement1; to indicate successful loading.

The other thing that happens when a module isuse d is that itsimport subroutine (if one exists) gets
called with any directives that were specified on theuse line. This is useful if you want to export
functions or variables to the program that’s using your module for functional programming but is
almost never used (and very often discouraged) for object oriented programming.

As you’ve no doubt guessed by now, modules and packages oftengo hand-in-hand. We know how to
use a module, but what are the rules on writing one? Well, the big one is this:

A module is a file that contains a package of the same name.

That’s it. So if you have a package calledTree::Fruit::Citrus::Lime , the file would be called
Tree/Fruit/Citrus/Lime.pm , and you would use it withuse Tree::Fruit::Citrus::Lime; .

A module can contain multiple packages if you desire. So eventhough the module is called
Chess::Piece , it might also contain packages forChess::Piece::Knight and
Chess::Piece::Bishop . It’s usually preferable for each package to have its own module, otherwise
it can be confusing to your users how they can load a particular package.

When writing modules, it’s important to make sure that they are well-named, and even more
importantly that they won’t clash with any current or futuremodules, particularly those available via
CPAN. If you are writing a module for internal use only, you can start its name withLocal:: which
is reserved for the purpose of avoiding module name clashes.

You can read more about writing modules in perldoc perlmodlib , perldoc perlmod ,
perldoc perlmodstyle , and a little on pages 554-556 of the Camel book.

To document your modules so that perldoc can provide information about them, read perldoc
perlpod and perldoc perlpodspec .

Use versus require
Perl offers several different ways to include code from one file into another.use is built on top of
require and has the following differences:

• Files which areuse d are loaded and executed at compile-time, not run-time. This means that all
subroutines, variables, and other structures will exist before your main code executes. It also
means that you will immediately know about any files that Perlcould not load.

• use allows for the import of variables and subroutines from the used package into the current one.
This can make programming easier and more concise.

• Files called withuse can take arguments. These arguments can be used to request special features
that may be provided by some modules.

Both methods:

• Check for redundant loading, and will skip already loaded files.

• Raise an exception on failure to find, compile or execute the file.

• Translate:: into your systems directory separator.

Where possibleuse and Perlmodulesare preferred overrequire .

Perl Training Australia (http://perltraining.com.au/) 101

Chapter 13. Modules

Warnings and strict
When your module is used by a script, whether or not it runs with warnings depends upon whether
the calling script is running with warnings turned on. You can (and should) invoke theuse warnings

pragma to turn on warnings for your module without changing warnings for the calling script.

Your modules should always use strict.

use strict;
use warnings;

Exercise
This exercise will have you adapt yourMyTest.pl code to become a module. There’s a list at the end
of this exercise of things to watch out for.

1. Create a directory namedp5lib .

2. Move yourMyTest.pl file into yourp5lib directory and rename it toMyTest.pm .

3. Make sureMyTest.pm usesstrict andwarnings .

4. Test that your module has no syntax errors by runningperl -c MyTest.pm.

5. Change your Perl script from before to use thelib pragma in order to find your module. (use

lib ’p5lib’;)

6. Change your Perl script touse your module. Check that everything still works as you expect.

7. Add a print statement to your module (outside any subroutines). This should be printed when
the module is loaded. Check that this is so.

Answers can be found inexercises/answers/p5lib/MyTest.pm and
exercises/answers/modules.pl

Things to remember...

The above exercises can be completed without reference to the following list. However, if you’re
having problems, you may find your answer herein.

• A module is a file that contains a package of the same name.

• Perl modules must return a true value to indicate successfulloading. (Put1; at the end of your
module).

• To use a module stored in a different directory, add this directory to the@INCarray. (Putuse lib

’path/to/modules/’ before the otheruse lines.

• To call a subroutine which is inside a module, you can access it via the double-colon. Eg:
MyModule::test();

102 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

Exporting and importing subroutines
Writing your ownimport function for each and every module would be a tiresome and error-prone
process. However, Perl comes with a module calledExporter , which provides a highly flexible
interface with optimisations for the common case.

Exporter works by checking inside your module for three special data structures, which describe
both what you wish to export, and how you wish to export them. These structures are:

• @EXPORTsymbols to be exported into the user’s name space by default

• @EXPORT_OKsymbols which the user can request to be exported

• %EXPORT_TAGSthat allows for bundles of symbols to be exported when the user requests a special
export tag.

@ISA
To take advantage ofExporter ’s import function we need to let Perl know that our package has a
special relationship with theExporter package. We do this by telling Perl that weinherit from
Exporter . Our package and the rest of our program does not need to be written in an object oriented
style for this to work.

Now when Perl goes looking for theimport function it will first look in our package. If it can’t be
found there, Perl will look for a special array called@ISA. The contents of the@ISAarray is
interpreted as a list of parent classes, and each of these will be searched for the missing method.

To specify that this package is a sub-class of the Exporter module we include the following lines:

use Exporter;
our @ISA = qw(Exporter);

use base

An alternative to adding parent modules to@ISAyourself is to use thebase pragma. This allows you
to declare a derived class based upon the listed parent classes. Thus the two lines above becomes:

use base qw(Exporter);

Thebase pragma takes care of ensuring that theExporter module is loaded.

Thebase pragma is available for all versions of Perl above 5.6.0.

An example
Here’s an example of just using@EXPORTand@EXPORT_OK. Our hypothetical module,
People::Manage is used for managing interpersonal relations.

package People::Manage;
use base qw(Exporter);
use vars qw(@EXPORT @EXPORT_OK);

@EXPORT = qw(invite $name @friends %addresses); # invite is a subroutine
@EXPORT_OK = qw(&taunt $spouse @enemies %postcodes); # so i s taunt

The ampersand in front of subroutines is optional.

Perl Training Australia (http://perltraining.com.au/) 103

Chapter 13. Modules

Exporting by default
Exporting your symbols by default, by populating the@EXPORTarray, means that anyone using your
module will receive these symbols without having to ask for them. This is generally considered to be
bad style, and is sometimes referred to as ’polluting’ the caller’s namespace.

The reason this is considered to be bad style is that there is nothing in theuse line to indicate that
anything is being exported. A programmer who is not familiarwith the module may inadvertently
define their own subroutines or variables which clash with those that are exported. Likewise, a
reviewer examining the code will not easily be able to determine from which module a given
subroutine may have been exported, especially if many modules are used.

Using the@EXPORTarray is highly discouraged.

Using@EXPORT_OKallows the user to choose which symbols they wish to bring into their name
space. All other symbols can be accessed by using their full name, such as
People::Manage::invite() , when required.

An example
Our module:

People/Manage.pm
package People::Manage; # create a package of the same name
use strict;
use warnings;
use base qw(Exporter);

List out the things we wish to export
our @EXPORT_OK = qw(invite $name @friends %addressbook

taunt $spouse @enemies @children $pet);

Only package variables can be exported, as such all of these
variables need to be declared with ’our’ not ’my’.

our $name = "Fred";
our $spouse = "Wilma";
our @children = qw(Pebbles);
our @friends = qw(Barney Betty);
our $pet = "Dino";
my $address = "301 CobbleStone Way, Bedrock";

our %addressbook = (
Barney => "303 Cobblestone Way, Bedrock",
Betty => "303 Cobblestone Way, Bedrock",
"Barney’s Mom" => "142 Boulder Ave, Granitetown",

);

sub invite {
my ($friend, $date) = @_;
return "Dear $friend,\n $spouse and I would love you to come t o".

"dinner at our place ($address) on $date.\n\n".
"Yours sincerely, $name\n";

}

sub taunt {
my ($enemy) = @_;
return "Dear $enemy, my pet $pet has more brains than you.\n" ;

}

1; # module MUST end with something true

104 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

Our program:

dinner.pl
#!/usr/bin/perl -w
use strict;
use People::Manage qw(invite %addressbook); # only using a few things

Invite some people over for dinner.

foreach my $person (keys %addressbook) {
print invite($person,"next Tuesday");

}

Importing symbols
Once your module is written and it exports a few symbols, it’stime to use it. This is done with the
use command that we’ve seen withstrict and other modules. We can load our module in three
ways:

• use People::Manage; which imports all of the symbols stored in@People::Manage::EXPORT .

• use People::Manage (); which importsnoneof the symbols in either
@People::Manage::EXPORT or @People::Manage::EXPORT_OK .

• use People::Manage qw($name $spouse invite); which imports all the listed symbols. If a
symbol is mentioned which is not in either@People::Manage::EXPORT or
@People::Manage::EXPORT_OK then a fatal error will occur.

Exercises
These exercises build on the previous exercises.

1. Change your MyTest.pm module to export thepass andfail symbols and import those into
your script. Change your script to callpass andfail instead of their fully qualified names.

2. Change your module to export the$PASS_MARKvariable and use that instead of its fully qualified
name.

Exporting tags
If you wish to export groups of symbols that are related to each other, there is an%EXPORT_TAGShash
which provides this functionality. This can be used in the follow manner:

%EXPORT_TAGS = (family => [qw/$name $spouse @children $pet /],
social => [qw/%address invite taunt @friends/],

);

Names which appear in%EXPORT_TAGSmust also appear in@EXPORTor @EXPORT_OK. Tags themselves
cannot be used in either export array.

Perl Training Australia (http://perltraining.com.au/) 105

Chapter 13. Modules

Importing symbols through tags
Symbols grouped in tags can be imported normally, by specifying each symbol, or by using the tag
provided. This is done by prepending the tag name with a colon:

use People::Manage qw/:family/; # Family related informat ion.
use People::Manage qw/:social/; # Social-related symbol s.
use People::Manage qw/:family :social/; # Both

Exercise

1. In yourMyTest module, create a tag which contains both subroutines and usethat instead of
specifying them both during the import.

Chapter summary

• A module is a separate file containing Perl source code.

• We can use modules by writinguse module_name; before we want to start using it.

• Perl looks for modules in a list of directories that are determined when the Perl interpretor is
compiled.

• Module names may contain double-colons (::) in their names such asFinance::Quote , these tell
where Perl to look for a module (in this case in theFinance/ directory.

• Modules can be used for class definitions or as libraries for common code.

• A module can contain multiple packages, but this is often a bad idea.

• It’s often a good idea to put your own modules into theLocal namespace.

106 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. Using Perl objects

In this chapter...
While discussion of Object Oriented programming is beyond the scope of this course, a great many
modules you may encounter while programming provide an object oriented interface. This chapter
will teach you what you need to know to use these modules.

Perl Training Australia runs a two day course on Object Oriented Programming in Perl, for
more information visit our website (http://www.perltraining.com.au/) or talk to your instructor
during a break.

You may also want to look at perldoc perlboot , perldoc perltoot , perldoc perltooc , and
perldoc perlbot .

Objects in brief
An objectis a collection of data (attributes) and subroutines (methods) that have been bundled into a
single item. Objects often represent real-world concepts,or logical constructs. For example, an
invoiceobject may have attributes representing the date posted, date date, amount payable, GST,
vendor, and so on. The invoice may have various methods that allow for payment to be made, and
possibly a payment to allow the invoice to be disputed.

An object in Perl is a reference to a specially prepared data structure. This structure may be a hash,
an array, a scalar or something more complex. However, as theuser of an object, we don’t need to
know (and should not care) what sort of structure is actuallybeing used. What matters are the
methodson the object, and how we can use them.

A Perl object is aspecialkind of reference because it also knows what class it belongsto. In other
words, an object knows what kind of object it is.

Object orientation allows us to createmultipleobjects from the same class which can each store
different information and behave differently according tothat information. This makes it very easy
for the users of those objects, as it makes the information easy to track and manipulate.

Using an object
To use a Perl module which provides an object oriented interface weuse it without specifically
importing any methods. For our examples we will use theDBI module, which allows us to interact
with a number of databases, and is one of the most commonly used modules in Perl.

#!/usr/bin/perl -w
use strict;
use DBI; # We can now create DBI objects.

Perl Training Australia (http://perltraining.com.au/)
107

Chapter 14. Using Perl objects

To learn more about DBI read perldoc DBI and the DBI homepage (http://dbi.perl.org/).

Perl Training Australia also runs a Database Programming with Perl course which you may find
of interest. For more information visit our website (http://www.perltraining.com.au/) or talk to your
instructor during the break.

Instantiating an object
To create a new object we call the constructor method on thenameof the class. In many cases this
method is callednew, however withDBI it is calledconnect ; as we get our database handle by
connectingto a database.

use DBI;

Create a DBI object (database connection handle)
my $dbh = DBI->connect($data_source, $username, $passwor d);

By convention, our connected database object is called$dbh , for "database handle".

We can create a number of database handles (objects), with each connecting to different databases or
with different usernames and passwords. We could also create a number of database handles
connecting to the same database. This could potentially be useful if we wished to execute multiple
SQL commands simulatenously, particularly if we’re dealing with a clustered database system.

use DBI;

my $oracle_dbh = DBI->connect($oracle_dsn, $oracleuser, $oraclepasswd);
my $postgres_dbh = DBI->connect($postgres_dsn, $postgre suser, $postgrespasswd);
my $mysql_dbh1 = DBI->connect($mysql_dsn, $mysqluser1, $ mysqlpasswd1);
my $mysql_dbh2 = DBI->connect($mysql_dsn, $mysqluser2, $ mysqlpasswd2);

Each of these objects represent a different database connection and we can call the otherDBI

methods on these objects from now on. Each object will remember which database it refers to
without further work on behalf of the programmer.

Calling methods on an object
As we covered earlier, we can get at the contents of a normal reference by using the arrow operator:

$array_ref->[$index]; # Access array element via array ref erence
$hash_ref->{$key}; # Access array element via hash referen ce

It should come as no big surprise that Perl object methods (orfunctions, if you’d prefer) can be
accessed the same way:

$object->method(); # Call method() on $object

In a specific case, we can call a method on one of ourDBI objects as follows:

use DBI;

my $dbh = DBI->connect($data_source, $username, $passwor d);

$dbh->do("UPDATE friends SET phone = ’12345678’ WHERE name = ’Jack’");

108 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. Using Perl objects

Destroying an object
When you no longer need an object you can let it go out of scope,just as when you no longer need
any other Perl data structure. In some cases the documentation may recommend calling certain clean
up functions. In the case ofDBI it is considered polite to disconnect from the database.

$dbh->disconnect();

Chapter summary

• Perl objects are special references to Perl data structureswhich know which class they belong to.

• Object orientation allows us to create multiple objects from the same class to store different
information.

• To use a Perl class we justuse the module.

• To create an object we call the constructor method on the class.

• Many objects of the same class can be created.

• To call a method on an object we use the arrow operator.

• Objects are destroyed when they go out of scope.

Perl Training Australia (http://perltraining.com.au/) 109

Chapter 14. Using Perl objects

110 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

In this chapter...
This chapter builds on the basic regular expressions taughtearlier in the course. We will learn how to
handle data which consists of multiple lines of text, including how to input data as multiple lines and
different ways of performing matches against that data.

Assumed knowledge
You should already be familiar with the following topics:

• Regular expression meta characters

• Quantifiers

• Character classes and alternation

• Them// matching function

• Thes/// substitution function

• Matching strings other than$_ with the=~ matching operator

Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2, 2nd Ed) of
the Camel book, and further information is available in the online Perl documentation by typing
perldoc perlre .

Capturing matched strings to scalars
Perl provides an easy way to extract matched sections of a regular expression for later use. Any part
of a regular expression that is enclosed in parentheses is captured and stored into special variables.
The substring that matches first set of parentheses will be stored in$1, and the substring that matches
the second set of parentheses will be stored in$2 and so on. There is no limit on the number of
parentheses and associated numbered variables that you canuse.

/(\w)(\w)/; # matches 2 word characters and stores them in $1 , $2
/(\w+)/; # matches one or more word characters and stores the m in $1

Parentheses are numbered from left to right by theopeningparenthesis. The following example
should help make this clear:

$_ = "fish";
/((\w)(\w))/; # captures as follows:

$1 = "fi", $2 = "f", $3 = "i"

$_ = "1234567890";
/(\d)+/; # matches each digit and then stores the last digit

matched into $1
/(\d+)/; # captures all of 1234567890

Perl Training Australia (http://perltraining.com.au/) 111

Chapter 15. Advanced regular expressions

Evaluating a regular expression in list context is another way to capture information, with
parenthesised sub-expressions being returned as a list. Wecan use this instead of numbered variables
if we like:

$_ = "Our server is training.perltraining.com.au.";
my ($full, $host, $domain) = /(([\w-]+)\.([\w.-]+))/;
print "$1\n"; # prints "training.perltraining.com.au."
print "$full\n"; # prints "training.perltraining.com.au ."
print "$2 : $3\n"; # prints "training : perltraining.com.au ."
print "$host : $domain\n" # prints "training : perltraining .com.au."

A regular expression that fails to match the given string does not always reset $1, $2 etc.
Therefore, if we do not explicitly check that our regular expression worked, we can end up using
data from a previous match. This can mean that the following code may cause unexpected
surprises:

while(<>) {
check that we have something that looks like a date in
YYYY-MM-DD format.

if(/(\d{4})-(\d{2})-(\d{2})/) {
print STDERR "valid date\n";

}
next unless $1;

if($1 >= $recent_year) {
print RECENT_DATA $_;

}
else {

print OLD_DATA $_;
}

}

If this code encounters a line which doesn’t appear to be a valid date, the line may be printed to
the same file as the last valid line, rather than being discarded. This could result in lines with
dates similar to "1901-3-23" being printed to RECENT_DATA, or lines with dates like "2003-1-1"
being printed to OLD_DATA.

Extended regular expressions
Regular expressions can difficult to follow at times, especially if they’re long or complex. Luckily,
Perl gives us a way to split a regular expression across multiple lines, and to embed comments into
our regular expression. These are known asextended regular expressions.

To create a extended regular expression, we use the special/x switch. This has the following effects
on the match part of an expression:

• Spaces (including tabs and newlines) in the regular expression are ignored.

• Anything after an un-escaped hash (#) is ignored, up until the end of line.

Extended regular expressions do not alter the format of the second part in a substition. This must still
be written exactly as you wish it to appear.

112 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

If you need to include a literal space or hash in an extended expression you can do so by preceeding
it with a backslash.

By using extended regular expressions, we can change this:

Parse a line from ’ls -l’
m{^([\w-]+)\s+(\d+)\s+(\w+)\s+(\w+)\s+(\d+)\s+(\w+\ s+\d+\s+[\d:]+)\s+(. *)$};

into this:

Parse a line from ’ls -l’

m{
^ # Start of line.
([\w-]+)\s+ # $1 - File permissions.
(\d+)\s+ # $2 - Hard links.
(\w+)\s+ # $3 - User
(\w+)\s+ # $4 - Group
(\d+)\s+ # $5 - File size
(\w+\s+\d+\s+[\d:]+)\s+ # $6 - Date and time.
(. *) # $7 - Filename.
$ # End of line.

}x;

As you can see, extended regular expressions can make your code much easier to read, understand,
and maintain.

Exercise
For these exercises you may find using the following structure useful:

my @unmatched;
while(<>) {

my ($origin, $date, $page) =
m{

REPLACEME
}x;

if($origin) {
print "$origin $date $page\n";

}
else { # Strange line, keep it for later

push @unmatched, $_;
}

}
if(@unmatched) {

print "The following requests were not matched:\n", @unmat ched;
}

Web server access logs typically contain long lines of information, only some of which is of interest
at any given time. In theexercises/access-pta.log file you’ll see an example taken from Perl
Training Australia’s webserver.

1. Write a regular expression which captures the request origin, the access date and requested
page. Print this out for each access in the file. The above starting code can be found in
exercises/log-process.pl .

You can find an answer to this exercise inexercises/answers/log-process.pl .

Perl Training Australia (http://perltraining.com.au/) 113

Chapter 15. Advanced regular expressions

Advanced exercise

1. Split tab-separated data into an array then print out eachelement using aforeach loop (an
answer’s inexercises/answers/tab-sep.pl , an example file is inexercises/tab-sep.txt).

Greediness
Regular expressions are, by default, "greedy". This means that any regular expression, for instance
. * , will try to match the biggest thing it possibly can. Greediness is sometimes referred to as
"maximal matching".

Greediness is also left to right. Each section in the regularexpression will be as greedy as it can
while still allowing the whole regular expression to match if possible. For example,

$_ = "The cat sat on the mat";

/(c. * t)(. *)(m. * t)/;

print $1; # prints "cat sat on t"
print $2; # prints "he "
print $3; # prints "mat";

It is possible in this example for another set of matches to occur. The first expressionc. * t could
have matchedcat leaving sat on the to be matched by the second expression. * . However, to do
that, we need to stopc. * t from being so greedy.

To make a regular expression quantifier not greedy, follow itwith a question mark. For example. * ?.
This is sometimes referred to as "minimal matching".

$_ = "The fox is in the box.";

/(f. * x)/; # greedy -- $1 = "fox is in the box"
/(f. * ?x)/; # not greedy -- $1 = "fox"

$_ = "abracadabra";

/(a. * a)/ # greedy -- $1 = "abracadabra"
/(a. * ?a)/ # not greedy -- $1 = "abra"

/(a. * ?a)(. * a)/ # first is not greedy -- $1 = "abra"
second is greedy -- $2 = "cadabra"

/(a. * a)(. * ?a)/ # first is greedy -- $1 = "abracada"
second is not greedy -- $2 = "bra"

/(a. * ?a)(. * ?a)/ # first is not greedy -- $1 = "abra"
second is not greedy -- $2 = "ca"

Exercise

1. Write a regular expression that matches the first and last words on a line, and print these out.

114 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

More meta characters
Here are some more advanced meta characters, which build on the ones covered earlier.

Table 15-1. More meta characters

Meta character Meaning

\c X Control character, i.e.CTRL -X

\0 nn Octal character represented bynn

\x nn Hexadecimal character represented bynn

\l Lowercase next character

\u Uppercase next character

\L Lowercase until\E

\U Uppercase until\E

\Q Quote (disable) meta characters until\E

\E End of lowercase/uppercase/quote

\A Beginning of string, regardless of whether /m is
used.

\Z End of string (or before newline at end),
regardless of whether /m is used.

\z Absolute end of string, regardless of whether /m is
used.

search for the C++ computer language:

/C++/ # wrong! regexp engine complains about the plus signs
/C\+\+/ # this works
/\QC++\E/ # this works too

search for "bell" control characters, eg CTRL-G

/\cG/ # this is one way
/\007/ # this is another -- CTRL-G is octal 07
/\x07/ # here it is as a hex code

Read about all of these and more in perldoc perlre .

Working with multi-line strings
Often, you will want to read a file several lines at a time. Consider, for example, a typical Unix
fortune cookie file, which is used to generate quotes for thefortune command:

All language designers are arrogant. Goes with the territor y... :-)
-- Larry Wall in <1991Jul13.010945.19157@netlabs.com >

%
Although the Perl Slogan is There’s More Than One Way to Do It, I hesitate
to make 10 ways to do something. :-)

-- Larry Wall in <9695@jpl-devvax.JPL.NASA.GOV >

%

Perl Training Australia (http://perltraining.com.au/) 115

Chapter 15. Advanced regular expressions

And don’t tell me there isn’t one bit of difference between nu ll and space,
because that’s exactly how much difference there is. :-)

-- Larry Wall in <10209@jpl-devvax.JPL.NASA.GOV >

%
"And I don’t like doing silly things (except on purpose)."

-- Larry Wall in <1992Jul3.191825.14435@netlabs.com >

%
: And it goes against the grain of building small tools.
Innocent, Your Honor. Perl users build small tools all day lo ng.

-- Larry Wall in <1992Aug26.184221.29627@netlabs.com >

%
/ * And you’ll never guess what the dog had * /
/ * in its mouth... * /

-- Larry Wall in stab.c from the perl source code
%
Because . doesn’t match \n. [\0-\377] is the most efficient w ay to match
everything currently. Maybe \e should match everything. An d \E would
of course match nothing. :-)

-- Larry Wall in <9847@jpl-devvax.JPL.NASA.GOV >

%
Be consistent.

-- Larry Wall in the perl man page
%

The fortune cookies are separated by a line which contains nothing but a percent sign.

To read this file one item at a time, we would need to set the delimiter to something other than the
usual\n - in this case, we’d need to set it to something like\n%\n .

To do this in Perl, we use the special variable$/ . This is called the input record separator.

$/ = "\n%\n";
while (<>) {

$_ now contains one RECORD per loop iteration
}

Conveniently enough, setting$/ to "" will cause input to occur in "paragraph mode", in which two
or more consecutive newlines will be treated as the delimiter. Undefining$/ will cause the entire file
to be slurped in.

undef $/;
$_ = <>; # whole file now here

Changing $/ doesn’t just change how readline (<>) works. It also affects the chomp function,
which always removes the value of $/ from the end of its argument. The reason we normally
think of chomp removing newlines is that $/ is set to newline by default.

It’s usually a very good idea to use local when changing special variables. For example, we
could write:

{
local $/ = "\n%\n";
$_ = <>; # first fortune cookie is in $_ now

}

to grab the first fortune cookie. By enclosing the code in a block and using local, we restrict the
change of $/ to that block. After the block $/ is whatever it was before the block (without us

116 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

having to save it and remember to change it back). This localisation occurs regardless of how
you exit the block, and so is particularly useful if you need to alter a special variable for a
complex section of code.

Variables changed with local are also changed for any functions or subroutines you might call
while the local is in effect. Unless it was your intention to change a special variable for one or
more of the subroutines you call, you should end your block before calling them.

It is a compile-time error to try and declare a special variable using my.

Special variables are covered in Chapter 28 of the Camel book, (pages 127 onwards, 2nd
Ed). The information can also be found in perldoc perlvar .

Since$/ isn’t the easiest name to remember, we can use a longer name byusing theEnglish module:

use English;

$INPUT_RECORD_SEPARATOR = "\n%\n"; # long name for $/
$RS = "\n%\n"; # same thing, awk-like

The English module is documented on page 884 (page 403, 2nd Ed) of the Camel book or
in perldoc English . You can find out about all of Perl’s special variables’ English names by
reading perldoc perlvar .

Exercise

1. In your directory is a file calledexercises/perl.txt which is a set of Perl-related fortunes,
formatted as in the above example. This file contains a great many quotes, including the ones in
the example above and many many more. Use multi-line regularexpressions to find only those
quotes which are from theperl man page . You might also want to refresh your memory of
chomp() at this point. (Answer:exercises/answers/fortunes.pl)

Regexp modifiers for multi-line data
Perl has two modifiers for multi-line data./s and/m. These can be used to treat the string you’re
matching against as either a single line or as multiple lines. Their presence changes the behaviour of
caret (̂), dollar ($) and dot (.).

By default caret matches the start of the string. Dollar matches the end of the string (regardless of
newlines). Dot matches anything but a newline character.

With the /s modifier, caret and dollar behave the same as in the default case, but dot will match the
newline character.

With the /m modifier, caret matches the start of any line within the string, dollar matches the end of
any line within the string. Dot does not match the newline character.

Perl Training Australia (http://perltraining.com.au/) 117

Chapter 15. Advanced regular expressions

my $string = "This is some text
and some more text
spanning several lines";

if ($string =~ /^and some/m) { # this will match because
print "Matched in multi-line mode\n"; # ^ matches the start o f any

} # line in the string

if ($string =~ /^and some/) { # this won’t match
print "Matched in single line mode\n"; # because ^ only match es

} # the start of the string.

if($string =~ /^This is some/) { # this will match
print "Matched in single line mode\n"; # (and would have with out

} # the /s, or with /m)

if($string =~ /(some. * text)/s) { # Prints "some text\nand some more text"
print "$1\n"; # Note that . is matching \n here

}

if($string =~ /(some. * text)/) { # Prints "some text"
print "$1\n"; # Note that . does not match \n

}

The differences between default, single line, and multi-line mode are set out very succinctly by
Jeffrey Friedl in Mastering Regular Expressions (see the Further Reading at the back of these notes
for details). The following table is paraphrased from the one on page 236 of that book.

His term "clean multi-line mode" describes one in which eachof ^ , $ and. all do what many
programmers expect them to do. That is. will match newlines as well as all other characters, and^

and$ each work on start and end of lines, rather than the start and end of the string.

Table 15-2. Effects of single and multi-line options

Mode Specified with ^ matches... $ matches... Dot matches
newline

default neither/s nor /m start of string end of string No

single-line /s start of string end of string Yes

multi-line /m start of line end of line No

clean multi-line both/m and/s start of line end of line Yes

Modifiers may be clumped at the end of a regular expression. Toperform a search using “clean
multi-line” irrespective of case your expression might look like this

/^the start. * end$/msi

and if we had the following strings

$string1 = "the start of the day
is the end of the night";

$string2 = "10 athletes waited,
the starting point was ready
how it would end
was anyone’s guess";

$string3 = uc($string2); # same as string 2 but all in upperca se

we’d expect the match to succeed with both$string2 and$string3 but not with$string1 .

118 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

Back references

Special variables
There are several special variables related to regular expressions. The parenthesised names beside
them are their long names if you use the English module.

• $& is the matched text (MATCH)

• $‘ (dollar backtick) is the unmatched text to the left of the matched text (PREMATCH)

• $’ (dollar forwardtick) is the unmatched text to the right of the matched text (POSTMATCH)

• $1, $2, $3, etc. The text matched by the 1st, 2nd, 3rd, etc sets of parentheses.

All these variables are modified when a match occurs, and can be used in the same way that other
scalar variables can be used.

my ($match) = m/^(\d+)/;
print $match;

or alternately...
m/^\d+/;
print $&;

match the first three words...
m/^(\w+) (\w+) (\w+)/;
print "$1 $2 $3\n";

You can also use$1 and other special variables in substitutions:

$string = "It was a dark and stormy night.";
$string =~ s/(dark|wet|cold)/very $1/;

When Perl sees you using PREMATCH ($‘), MATCH ($&), or POSTMATCH ($’), it assumes that
you may want to use them again. This means that it has to prepare these variables after every
successful pattern match. This can slow a program down because these variables are
"prepared" by copying the string you matched against to an internal location.

If the use of those variables make your life much easier, then go ahead and use them. However,
if using $1, $2 etc can be used for your task instead, your program will be faster and leaner by
using them.

If you want to use parentheses simply for grouping, and don’t want them to set a $1 style
variable, you can use a special kind of non-capturing parentheses, which look like (?: ...)

this only sets $1 - the first set of parentheses are non-capt uring
m/(?:Dr|Prof) (\w+)/;

The special variables$1 and so on can be used in substitutions to include matched textin the
replacement expression:

Perl Training Australia (http://perltraining.com.au/) 119

Chapter 15. Advanced regular expressions

swap first and second words
s/^(\w+) (\w+)/$2 $1/;

However, this is no use in a simple match pattern, because$1 and friends aren’t set until after the
match is complete. Something like:

print if m{(t\w+) $1};

... will not match "this this" or "that that". Rather, it will match a string containing "this" followed by
whatever$1 was set to by an earlier match.

In order to match "this this" (or "that that") we need to use the special regular expression meta
characters\1 , \2 , etc. These meta characters refer to parenthesised parts ofa match pattern, just as
$1 does, butwithin the same matchrather than referring back to the previous match.

print if found repeated words starting with ’t’: ie "this th is"
(note, this contains a subtle bug which you’ll find in the ex ercise)
print if m{(t\w+) \1};

Exercises

1. Write a script which swaps the first and the last words on each line.

2. Write a script which looks for doubled terms such as "bang bang" or "quack quack" and prints
out all occurrences. This script could be used for finding typographic errors in text. (Answer:
exercises/answers/double.pl)

Advanced exercises

1. Make your swapping-words program work with lines that start and end with punctuation
characters. (Answer:exercises/answers/firstlast.pl)

2. Modify your repeated word script to work across line boundaries (Answer:
exercises/answers/multiline_double.pl)

3. What about case sensitivity with repeated words?

Chapter summary

• Input data can be split into multi-line strings using the special variable$/ , also known as
$INPUT_RECORD_SEPARATOR.

• The /s and/m modifiers can be used to treat multi-line data as if it were a single line or multiple
lines, respectively. This affects the matching of^ and$, as well as whether or not. will match a
newline.

• The special variables$&, $‘ and $’ are always set when a successful match occurs.

120 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

• $1, $2, $3 etc are set after a successful match to the text matched by thefirst, second, third, etc sets
of parentheses in the regular expression. These should onlybe usedoutsidethe regular expression
itself, as they will not be set until the match has been successful.

• Special non-capturing parentheses(?:...) can be used for grouping when you don’t wish to set
one of the numbered special variables.

• Special meta characters such as\1 , \2 etc may be usedwithin the regular expression itself, to refer
to text previously matched.

Perl Training Australia (http://perltraining.com.au/) 121

Chapter 15. Advanced regular expressions

122 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I/O

In this chapter...
In this chapter, we learn how to open and interact with files.

Angle brackets

The line input operator

The line input operator is discussed in-depth on page 81 (page 53, 2nd Ed) of the Camel
book. You can read about the closely-related readline function using perldoc -f readline .

We have encountered the line input operator<> in situations such as these:

reading lines from STDIN (or from files on the command line)
while (<>) {

Process the line of input in $_
}

reading a single line of user input from STDIN
my $input = <STDIN>;

reading all lines from STDIN into an array
my @input = <STDIN>;

• In scalar context, the line input operator yields the next line of the file referenced by the filehandle
given.

• In list context, the line input operator yields all remaining lines of the file referenced by the
filehandle. (Be careful when using this as you may use up all your memory if the file is large).

• The default filehandle isSTDIN, or any files listed on the command line of the Perl script (eg
myscript.pl file1 file2 file3).

Exercises

1. Use the line input operator to accept and print input from the user on a line-by-line basis. Hint:
you’ve been doing this all week.

2. Modify your previous script to use awhile loop to get user input repeatedly, until they type "Q"
(or "q" - check out thelc() anduc() functions by usingperldoc -f uc andperldoc -f lc)
(Answer:exercises/answers/userinput.pl)

Perl Training Australia (http://perltraining.com.au/) 123

Chapter 16. File I/O

Opening a file for reading, writing or appending

The open() function is documented on pages 747-755 (pages 191-195, 2nd Ed) of the
Camel book, and also in perldoc -f open .

Theopen() function is used to open a file for reading or writing (amongstother things).

In brief, Perl uses the same characters as shell does for file operations. That is:

• < says to open the file for reading

• > says to open the file for writing

• >> says to open the file for appending.

If you need more control over how you open your files, check out the sysopen function by using
perldoc -f sysopen . Using sysopen is especially important if you’re running with elevated
privileges, as it can help protect against dangerous race conditions. You can read more about
that on pages 571-573 in the Camel book (3rd Ed only).

Opening for reading
In a typical situation, we might useopen() to open and read from a file:

open(LOGFILE, " < /var/log/httpd/access.log");

The less than (<) character used to indicate reading is assumed so we could equally well have said:

open (LOGFILE, "/var/log/httpd/access.log");

However it is still always a good idea to explicitly open yourfiles for reading by using the<
character. This protects you from the cases where your filename has odd characters in it, such as<, >

and| which all mean special things toopen .

Failure

You shouldalwayscheck for failure of anopen() statement:

open(LOGFILE, " < /var/log/httpd/access.log")
or die "Can’t open /var/log/httpd/access.log: $!";

Attempting to read from or write to an unopened file may cause unexpected results.

die is a Perl function which takes an error message and terminates the program displaying that
message to the user. In this example, the die statement (which is always true) is executed only if the
open statement does not return true, that is, if there was an error in opening the file.$! is the special
variable which contains the error message produced by the last system interaction.

Perl tries to be helpful when dying on errors and will append the appropriate filename and line
number of your script to the end of the die message, with a newline. If you don’t want this behaviour,
end the die message with a newline (\n) character. For example:

124 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I/O

The following provides an error with file and line-number:
open(LOGFILE, "< $file") or die "Cannot open $file: $!";

Here the file and line-number are omitted.
open(LOGFILE, "< $file") or die "Cannot open $file: $!\n";

Make sure you don’t do this by accident, and miss out on this important information.

$! is documented in on page 669 (page 134, 2nd Ed) of the Camel book and also in perldoc
perlvar .

You can read more about die on page 700 (page 157, 2nd Ed) of the Camel book and also with
perldoc -f die .

An alternative to explicitly checking whether open and other functions succeeded is to use the
Fatal module:

use Fatal qw(open close);

open(LOGFILE, "< $file"); # no need to check!

close(LOGFILE); # no need to check!

The Fatal module creates its own functions for the ones you have passed in, and tells Perl to
use those instead. These throw an exception (die) if the original function returns a false value.

Care should be taken when retroactively using Fatal on existing programs. It changes the
behaviour of the specified functions for the whole package, not necessily just the part you’re
looking at.

For more information read perldoc Fatal .

Opening for writing and appending
We use> and>> to open files for writing:

Open file for writing
open(OUTFILE, " > /tmp/output") or die $!;

Open file for appending
open(APPEND, " >> /tmp/out.log") or die $!;

When using> to open files for writing this willclobberany contents of your file.> truncates the file
when it is opened, just as it does in shell. So even if you don’twrite anything to the file, the original
contents will be lost upon opening.

Using> or >> will cause the files to spring into existence if they do not already exist, so you don’t
have to worry about how to create them before writing.

Perl Training Australia (http://perltraining.com.au/) 125

Chapter 16. File I/O

Funny filenames
Be careful when trying to open a file whose name contains characters that might have special
meaning toopen() , in particular those that start or end with| (pipe), or begin with> or <, as these
may result inopen() not doing what you expect. Leading and trailing spaces are also ignored.

Under Perl 5.6.0 and above, a three-argument version ofopen() exists. This version ofopen() treats
the filename literally, including special characters and spaces. You use it like this:

my $filename = "filename ending with spaces ";

open(FILE, "<", $filename)
or die "Failed to open file: $filename for reading: $!";

while(<FILE >) {
Process the line of input in $_

}

The three argument version ofopen is much safer than the two-argument version, especially if you’re
dealing with untrusted user input, as no special interpretation is done on the filename. It’s described
with the rest of theopen documentation.

For a safe file open for those who can’t upgrade to Perl 5.6, have a look at sysopen .
Information about sysopen can be found in perldoc -f sysopen and pages 808-810 (pages 194,
2nd Ed) of the Camel book.

Filehandles
The first argument we pass toopen is a filehandle. We can use this to have access to the file for the
mode in which it was opened.

use Fatal qw(open close);

Open access.log for reading using LOGFILE as our filehandl e
open(LOGFILE, " <", "/var/log/httpd/access.log");

use the filehandle in the <> line input operator to read the
contents
while (<LOGFILE>) {

print if /perltraining.com.au/;
}

close LOGFILE;

open a new logfile for appending
open(SCRIPTLOG, " >>", "myscript.log");

print() takes an optional filehandle argument - defaults t o STDOUT
print SCRIPTLOG "Opened logfile successfully.\n";

close SCRIPTLOG;

Note that you should always close a filehandle when you’re finished with it (even though any open
filehandles will be automatically closed when your script exits).

126 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I/O

Scalar filehandles
Under Perl version 5.6.0 and above, you can provide a scalar as the first argument to theopen

function. This means that your filehandles can have scope, and makes it easier to pass them to
subroutines and put into structures such as hashes and arrays. Where possible it is a good idea to
always use scalar filehandles.

use Fatal qw(open);

my $fh;
open($fh," <", "/path/to/file");

We can also declare the variable inside the call to open
open(my $out_fh, ">", "/path/to/other/file");

In versions before 5.6.0 you can do the same thing by using theFileHandle module, but you need to
declare your intentions first:

use FileHandle;

my $fh = FileHandle->new; # $fh is now a FileHandle object.
open ($fh, " <", "/path/to/file") or die $!;

my $out_fh = FileHandle->new;
open ($out_fh, " >", "/path/to/other/file") or die $!;

You use scalar filehandles the same way as you use regular ones:

while(<$fh >) {
do something with each line of the file

}

print to open filehandle:
print $out_fh "Today is a good day!";

Or (to make the filehandle stand out more)
print {$out_fh} "Today is a good day!";

Using theFileHandle module also works in Perl 5.6.0 and above, so if compatibility with older
versions of Perl is important to you, you should use theFileHandle module for scalar filehandles.

For more information seeperldoc FileHandle and pages 895-898 (page 442-444, 2nd Ed) in the
Camel book.

Exercises

1. Write a script which opens a file for reading. Use awhile loop to print out each line of the file.

2. Use the above script to open a Perl script. Use a regular expression to print out only those lines
not beginning with a hash character (i.e. non-comment lines). (Answer:
exercises/answers/delcomments.pl)

3. Create a new script which opens a file for writing. Write outthe numbers 1 to 100 into this file.
(Hint: the numbers 1 to 100 can be generated by using the.. operator eg:foreach my $value

(1..100) {}) (Answer:exercises/answers/100count.pl)

Perl Training Australia (http://perltraining.com.au/) 127

Chapter 16. File I/O

4. Create a new script which opens a log file for appending. Create awhile loop which accepts
input from STDIN and appends each line of input to the log file.(Answer:
exercises/answers/logfile.pl)

5. Create a script which opens two files, reads input from the first, and writes it out to the second.
(Answer:exercises/answers/readwrite.pl)

Changing file contents
When manipulating files, we may wish to change their contents. A flexible way of reading and
writing a file is to import the file into an array, manipulate the array, then output each element again.

It is important to ensure that should anything go wrong we don’t lose our original data. As a result,
it’s consideredbest-practiceto write our data out to a temporary file and them move that overthe
input file after everything has been successful.

a program that reads in a file and writes the lines in sorted o rder.
use Fatal qw(open close rename);

open(my $infile, " <", "file.txt");
my @lines = <$infile >; # Slurps all the lines into @lines.
close $infile;

@lines = sort @lines;

open temporary file to save our sorted data into
open(my $outfile, " >", "file.txt.tmp");

use print’s ability to print lists
print {$outfile} @lines;
close $outfile;

we know that we were successful, so write over the original f ile
only move the file * after * the filehandle has been closed.
rename("file.txt.tmp", "file.txt");

You can learn more about Perl’s rename function with perldoc -f rename .

Always remember to close the file before attempting to rename Failure to do this may result in
rename attempting to move or copy the file before all of the data has been written to it, or for the
rename to fail entirely on systems that don’t allow open files to be renamed.

Secure temporary files
TheFile::Temp module creates a name and filehandle for a temporary file. The default assumption
is that any such temporary file will be a binary file. In this example we’ll be using Perl’sbinmode

function to mark it as a text file when needed. We’ll discuss more aboutbinmode later in this chapter.

128 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I/O

use File::Temp qw(tempfile);

my ($tmp_fh, $tmp_name) = tempfile();

Set the file as a text-file on Win32 systems.
binmode($tmp_fh,’:crlf’) if ($^O eq "MSWin32");

print {$tmp_fh} @lines;
close $tmp_fh;

only move the file * after * the filehandle has been closed.
rename($tmp_name, "file.txt");

TheFile::Temp module can also be used to create in-memory temporary files ifrequired.

Looping over file contents
If you don’t need to manipulate all of the lines together (forexample sorting) you ought to forgo the
reading things into an array and just loop over each line. Continue to ensure, however, that your
original data cannot be lost if the program terminates unexpectedly.

use Fatal qw(open close);

removes duplicated lines
open(my $infile, " <", "file.txt");
open(my $outfile, " >", "unique.txt");

my $prevline;
while(<$infile >) {

print {$outfile} $_ unless ($_ eq $prevline);
$prevline = $_;

}

close $infile;
close $outfile;

Exercises

1. Theexercises/numbers.txt contains a single number on each line. Open the file for reading,
increment the number by the current line number (eg the first number will be incremented by 1,
the second by 2 and so on) and print the results to a second file.

2. Now that the above program is working, userename to save your changes back to the original
file name. Make sure you are closing your filehandle before moving the file! (Answer:
exercises/answers/increment.pl)

3. Open a file, reverse its contents (line by line) and write itback to the same filename. For
example, "this is a line" would be written as "enil a si siht" (Answer:
exercises/answers/reversefile.pl)

Perl Training Australia (http://perltraining.com.au/) 129

Chapter 16. File I/O

Opening files for simultaneous read/write
Files can be opened for simultaneous read/write by putting a+ in front of the> or < sign.+< is
almost always preferable, as+> would overwrite the file before you had a chance to read from it.

Read/write access to a file is not as useful as it sounds --- except under special circumstances
(notably when dealing with fixed-length records) you can’t usefully write into the middle of the file
using this method, only onto the end. The main use for read/write access is to read the contents of a
file and then append lines to the end of it.

Example: Reading a file and adding to the end.
Program that checks to see if $username appears in the file
adds $username to the end, if not.
use Fatal qw(open close);

my $username = <STDIN>;
chomp $username;

open(my $users_fh, "+<", "users.txt");

my $found;
while(<$users_fh >) {

chomp;

case insensitive matching
if(lc($_) eq lc($username)) {

$found = 1;
last;

}
}

We’ll be at the end of our file if $found isn’t set
unless($found) {

print {$users_fh} "$username\n";
}
close $users_fh;

The small print

+< puts you at the start of the file. Note that it won’t create a newfile if the file you’re dealing with
does not exist (you’ll just get an error that the file doesn’t exist). If you start writing before you’ve
reached the end of the file, you will overwrite characters in that file (from that point). Even if you’re
dealing with fixed-length records and think you know what you’re doing, this is often still a bad idea.

+>> initially puts you at the end of the file. It will create a new file if necessary and will not clobber
an old one. It allows you to read at any point in the file, but allwrites will always go to the end.

Buffering
When Perl wants to read a file from disk, it asks the operating system to go fetch it. It would be very
slow if Perl had to ask the operating system for each and everyline, so typically it asks for a large
chunk (a block) and then holds than in memory, until your program has used it all and needs more, or
has finished executing. This is called input buffering.

For the same reasons, Perl also buffers its output. That is, it saves up the data that you want to print
to a file or STDOUT and only prints it when it has enough. Once the buffer is full, an end of file
character is seen or the filehandle is closed, then it isflushedto the disk. This is why it is essential

130 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I/O

that we close the relevant filehandle before copying a file with File::Copy . Data going to the screen
rather than a file will be sent upon seeing a newline.

You can see the effects of buffering with the following code (in exercises/buffering.pl):

foreach my $number (1..5) {
print "$number ";
sleep(1);

}

STDERR, on the other hand, is never buffered. When you print to STDERR your content appears on
the screen or in the file immediately. We can also turn off buffering to our other filehandles when
necessary. To do so, we can use Perl’sIO::Handle module.

use IO::Handle;

Turn on automatic flushing for STDOUT
STDOUT->autoflush(1);

Flush $some_filehandle’s buffer, but don’t turn on autofl ush
$some_filehandle->flush();

Turn on automatic flushing for $fh
$fh->autoflush(1);

Turn off automatic flushing STDOUT (now it’ll be buffered a gain)
STDOUT->autoflush(0);

Since both print and readline (<>) are buffered, you shouldnot use them for editing a file in-place. If
you must work with in-place edits, use the lower level functions such assysseek() , syswrite() and
sysread() . Perl also has a-i switch, for more useful in-place modification of files. Theseconcepts
are not covered in this course.

For more information about open including simultaneous read/write, see perldoc
perlopentut . Also read pages 747-755 (pages 191-195, 2nd Ed) of the Camel book.

For information about the -i option to Perl read perldoc perlrun and pages 495-497 (page 332,
2nd Ed) of the Camel book.

Read the documentation in perldoc IO::Handle for the standard way in Perl to control buffering
on a per-filehandle basis.

An excellent tutorial on buffering, its advantages and disadvantages, and how to manipulate it
from Perl can be found in Mark Jason Dominus’ excellent article on Suffering from Buffering
available from his Perl FAQs (http://perl.plover.com/FAQs/Buffering.html).

Opening pipes
If the filename given toopen() begins with a pipe symbol (|), the filename is interpreted as a
command to which output is to be piped, and if the filename endswith a | , the filename is to be
interpreted as a filename which pipes input to us.

Perl Training Australia (http://perltraining.com.au/) 131

Chapter 16. File I/O

We can use pipes to read information from any process we can execute on our system. Once the
command is open, we can read from the resulting filehandle in the same way we would read from
any other file. In the example below, we use secure shell (ssh) to read a file on a remote machine.

#!/usr/bin/perl -w
This program allows us to read a file from another machine
using secure shell. This is most useful if we can login witho ut
a password (eg, established keys).
use strict;
use Fatal qw(open close);

Process our command line arguments, and complain if we don’ t
have both a host and filename.
my ($host, $file) = @ARGV;
unless ($host and $file) {

die "Usage: $0 host filename\n";
}
open (my $ssh, "ssh $host cat $file |");

while(<$ssh >) {
We can process the file in any way we like here.
In this particular case, we’ll simply print it to
our STDOUT.

print;
}

Here’s an example which writes to thesort command, which is a standard utility on both Windows
and Unix systems. Even though Perl has its ownsort function, the external command is very good at
dealing with large amounts of data in a memory-efficient manner.

use Fatal qw(open close);

Open our external sort command.
open (my $sort_fh, "|sort");

Our friends will be printed in sorted order.
foreach my $friend (qw/Jacinta Damian Kirrily Paul/) {

print {$sort_fh} "$friend\n";
}
close $sort_fh;

If you’re interested in reading more about inter-process communication, including pipes,
signals, sockets and the like, check out perldoc perlipc .

Exercises

1. Modify the second example above (provided for you asexercises/sort_starter.pl in your
exercises directory) to accept user input and print out thesorted version.

2. Change your script to accept input from a file usingopen() (Answer:
exercises/answers/sort.pl)

3. If you are using a Unix system: change your script to pipe its input through thestrings
command and thensort. Now if you specify a file that is not a text file, it will only sort and

132 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I/O

display printable strings. Try running this over/usr/bin/perl . (Answer:
exercises/answers/strings.pl)

File locking
File locking can be achieved using theflock() function. This can be used to guard against race
conditions or other problems which occur when two (or more) processes want to access the same file
at the same time.

flock() is documented on page 714 (page 166, 2nd Ed) of the Camel book, or use perldoc
-f flock to read the online documentation.

flock is Perl’s portable file-locking mechanism, and works on mostoperating systems (and produces
a fatal error on those which it does not). The locks set byflock are advisory only, which means that
a process that chooses not to useflock can (and will) ignore any locks in place.flock can only lock
entire files, not individual records. Depending upon your setup, flock may or may not work over
NFS.

using flock
use Fcntl ’:flock’; # import LOCK_ * constants

flock(FILEHANDLE, LOCK_EX); # exclusive (write) access
flock(FILEHANDLE, LOCK_SH); # shared (read-only) access

As flock only works onfilehandles, instead of filenames, you have to open the file firstbeforeyou
try to lock it. It’s important to make sure that you open the file for writing, if you intend to write to it,
and that you don’t clobber the contents of the file when doing so. This is a good use of+<. Closing a
locked file releases any locks the process holds upon it. Thisis good because it means that if your
process exits unexpectedly all locks it held are released and other processes may then go forward
with their locks.

In the following example, we’re locking a file before re-writing it. The exclusive lock stops any other
process from holding a lock on the file while we perform our operations.

use Fcntl ’:flock’; # import LOCK_ * constants
use Fatal qw(open close truncate flock);

Open file for read and write
open my $file_fh, "+<", $file;

Lock the file for writing (exclusive lock)
flock($file_fh, LOCK_EX);

At this point we have exclusive access to the file.
Wipe previous process’ details
truncate($file_fh, 0);

Write to the file, or perform other operations as needed her e...
print {$file_fh} $data;

close $file_fh; # Closing the file releases the lock as well.

Perl Training Australia (http://perltraining.com.au/) 133

Chapter 16. File I/O

flock will wait indefinitely until the lock is granted, however it can return early if interrupted by a
signal or other event. It’s important to ensure that flock returnstrue to be sure that you have the lock
you requested. It is possible to makeflock non-blockingas follows:

use Fcntl ’:flock’; # import LOCK_ * constants

flock(FILEHANDLE, LOCK_EX | LOCK_NB); # non-blocking excl usive lock
flock(FILEHANDLE, LOCK_SH | LOCK_NB); # non-blocking shar ed lock

All attempts to get anon-blockinglock return immediately with eithertrue for success (the lock was
obtained) orfalsefor failure (the lock was not obtained).

For an excellent introduction on using flock , the slides from Mark Jason Dominus’ File
Locking Tricks and Traps make excellent reading. They can be found at
http://perl.plover.com/yak/flock/.

Handling binary data
If you are opening a file which contains binary data, you probably don’t want to read it in a line at a
time usingwhile (<>) { } , as there’s no guarantee that there will be any line breaks inthe data,
and we’ll probably end up with very uneven chunks.

Instead, we can useread() to read a certain number of bytes from a filehandle. However, before we
do that, we should call thebinmode() function on the filehandle, so that Perl knows that we’ll be
dealing with a binary file. This means Perl won’t try to do any transformations of input based upon
the operating system or locale where your program is running.

binmode() must be called on the filehandle before any corresponding fileI/O. It’s best to call it
immediately after you open the file.

You can learn more about read() by reading page 768 (page 202, 2nd Ed) of the Camel
book or perldoc -f read .

You can learn more about binmode() by reading page 685 (page 147, 2nd Ed) of the Camel
book, or perldoc -f binmode .

read() takes the following arguments:

• The filehandle to read from

• The scalar to put the binary data into

• The number of bytes to read

• The byte offset to start from (defaults to 0)

134 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I/O

#!/usr/bin/perl -w
Prints a random image
use strict;
use Local::File qw(random_image);
use Fatal qw(open close);
use CGI;

Select a random image.
my $image = random_image();

Open image file for reading
open(my $image_fh, "<", $image);

Call binmode on our filehandles
binmode STDOUT;
binmode $image_fh;

Print file headers
print CGI->header(-type => "image/jpg");

Print file contents to STDOUT
my $buffer;
while (read $image_fh, $buffer, 1024) {

print $buffer; # Prints to STDOUT
}
close $image_fh;

Chapter summary

• Angle brackets<> can be used for simple line input. In scalar context, they return the next line; in
list context, all remaining lines; the default filehandle isSTDIN or any files mentioned in the
command line (ie@ARGV).

• Theopen() andclose() functions can be used to open and close files. Files can be opened for
reading, writing, appending, read/write, or as pipes.

• File locking can be achieved usingflock() .

• Binary data can be read using theread() function. Thebinmode() function should be used to
ensure platform independence when reading binary data.

Perl Training Australia (http://perltraining.com.au/) 135

Chapter 16. File I/O

136 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Directory interaction

In this chapter...
In this chapter, we learn how to work with directories in various ways.

The globbing operator

The filename globbing operator is documented on page 83 (page 55, 2nd Ed) of the Camel
book. You can also read about it with perldoc perlop .

Theglobbingoperator looks the same as the line input operator, but is really quite different.

If the angle brackets have anything in them other than a filehandle or nothing, it will work as a
globbing operator and whatever is between the angle brackets will be treated as a filename wildcard.
For instance:

my @files = <* .txt >;

The filename glob* .txt is matched against files in the current directory, then either they are
returned as a list (in list context, as above) or one scalar ata time (in scalar context).

Perl’s globs operate the same way as they do in the UNIX C-shell. Don’t worry if you don’t know
C-shell, the basic pattern matching operators (such as* and?) have the same behaviour as just about
any other shell that you may have used.

If you get a list of files this way, you can then open them in turnand read from them.

while (my $filename = <* .txt >) {
open (my $in_fh, " <", $filename) or die ("Can’t open $filename: $!");

Read from the file

close $in_fh;
}

Theglob() function behaves in a very similar manner to the angle bracket globbing operator.

my @files = glob(" * .txt");

foreach my $file (glob(" * .txt")) {
Process $file

}

Theglob() is considered much cleaner and better to use than the angle-brackets globbing operator.

When using glob , you can combine more than one pattern in order to get a wider selection of
files. For example, to get all the .txt and .pl files you can write:

glob(" * .txt * .pl");

Perl Training Australia (http://perltraining.com.au/) 137

Chapter 17. Directory interaction

Like all functions, you can read more about glob using perldoc -f glob .

Exercises

1. Use the file globbing function or operator to find all Perl scripts in your current directory and
print out their names (assuming they are named in the form* .pl) (Answer:
exercises/answers/findscripts.pl)

2. Use the above example of globbing to print out all the Perl scripts one after the other. You will
need to use theopen() function to read from each file in turn. (Answer:
exercises/answers/printscripts.pl)

Finding information about files

The file test operators are documented fully in perldoc -f -x .

We can find out various information about files by using file test operators and functions such as
stat() .

Table 17-1. File test operators

Operator Meaning

-e File exists.

-r File is readable

-w File is writable

-x File is executable

-o File is owned by you

-z File has zero size.

-s File has nonzero size (returns size).

-f File is a plain file (as opposed to a directory,
symbolic link, device etc.)

-d File is a directory.

-l File is a symbolic link.

-p File is a named pipe (FIFO), or Filehandle is a
pipe.

-S File is a socket.

-b File is a block special file.

-c File is a character special file.

138 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Directory interaction

Operator Meaning

-t Filehandle is opened to a tty.

-u File has setuid bit set.

-g File has setgid bit set.

-k File has sticky bit set.

-T File is a text file.

-B File is a binary file (opposite of -T).

-M Days since file last modified, when script started.

-A Same for access time.

-C Same for inode change time.

Here’s how the file test operators are usually used:

#!/usr/bin/perl -w
use strict;

if(not -e "config.txt") {
die "Config file doesn’t exist";

}

Thestat() function returns similar information for a single file, in list form.lstat() can also be
used for finding information about a file which is pointed to bya symbolic link. If you’ve used these
functions in C or other languages, then you’ll probably find them somewhat familiar in Perl. Check
outperldoc -f stat to see the format this data is returned in and how to make use ofit.

The file test operators expect the file you’re testing to be in the current working directory. If this
is not the case, make sure you prepend a path to the file before doing your test.

Multiple file tests
Occasionally it is desirable to perform several tests on thesame file at the same time. Perhaps you’d
like to check that a file is both readable and writable. It is possible to perform your test like this:

if (-r $file && -w $file) {
...

}

but that involves two separate tests which both take time. The file might also change between the
tests (which is why file tests are almost always a bad idea in security situations).

Perl caches the result of file tests in a special filehandle called _ (underscore). Performing tests on
this filehandle can often avoid subsequent system calls, resulting in a slight performance gain.

if(-r $file && -w _) {
...

}

There are some caveats on when the_ filehandle can be used with certain operators such as-l and
-t . To find out more about these and to learn more about file test operators readperldoc -f -x.

Perl Training Australia (http://perltraining.com.au/) 139

Chapter 17. Directory interaction

Exercises

1. Use the file test operators to print out only files from a directory which are "normal" files, i.e. not
directories, symbolic links or other oddities. (Answer:exercises/answers/normaldirlist.pl)

2. Write a script to find zero-byte files in a directory. (Answer: exercises/answers/zerobyte.pl)

3. Write a script to find the largest file in a directory:exercises/answers/largestfile.pl)

4. Write a script which asks a user for a file to open, takes their input from STDIN, checks that the
file exists, then prints out the contents of that file. (Answer:
exercises/answers/fileexists.pl)

Changing the working directory
The functionchdir allows you to change your program’s working directory. All relative file access
from that point on will use the new directory. Note that this doesnot change the working directory of
the calling process.

use Fatal qw(chdir);

Archive log files
my $tar = "/bin/tar";
my $date = "2007-01-01";
my $directory = "/var/log/apache/";

chdir($directory); # Will die on failure, because of use Fat al

Get all files in this directory
my @files = glob(" * .log. * ");
system("$tar -czf weblogs.$date.tgz @files") if @files;

We learn how to check whether system worked later in the cour se.

You can find more about chdir by reading perldoc -f chdir or page 688 (page 148, 2nd Ed)
in the Camel book.

To find out what your current working directory is, we can use the Cwdmodule:

use Cwd;
my $current_working_directory = getcwd();

140 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Directory interaction

Recursing down directories

The File::Find module is documented on pages 889-890 (page 439, 2nd Ed) or more fully in
perldoc File::Find .

The built-in functions described above do not enable you to easily recurse through subdirectories.
Luckily, theFile::Find module is part of the standard library distributed with Perl5.

File::Find emulates Unix’sfind command. It takes as its arguments a subroutine to execute for
each file found, and a list of directories to search. Note thatto pass a reference to a subroutine we
prefix the name of the subroutine with\& . In our example below, this is\&wanted .

#!/usr/bin/perl -w
use strict;
use File::Find;

print "Enter the directory to start searching in: ";
chomp(my $dir = <STDIN>);

find takes a subroutine reference and the directory to star t working from.
find (\&wanted, $dir);

sub wanted {
if(/\.pl$/) { # See if it’s a .pl file

print "$File::Find::name\n"; # Print the current file name .
}

}

For each file found, certain variables are set.

• $_ is set to the name of the current file.

• $File::Find::dir is set to the directory that contains the file.

• $File::Find::name contains the full name of the file, i.e.$File::Find::dir/$_ .

File::Find automatically changes your current working directory to the same as the file you are
currently examining. Thus there’s rarely a need to use $File::Find::dir . If all you want to do is
process the file regardless of its location on the file system you can simply open the file using
the name in $_. This behaviour can be turned off if desired, see perldoc File::Find for further
information.

File::Find::Rule
Some people find the call-back interface toFile::Find difficult to understand. Furthermore, storing
both your rules and your actions in the call-back subroutinehides a lot of detail from someone
glancing over your code. As a result, an alternative exists calledFile::Find::Rule .

The below traverses the directory trees from@ARGVand returns the filenames for files ending in.mp3

or .ogg which are greater than 100Kb and haven’t been accessed for a year or more. We can then
work with that list as we see fit.

Perl Training Australia (http://perltraining.com.au/) 141

Chapter 17. Directory interaction

use File::Find::Rule;
my $YEAR_AGO = time() - 365 * 24 * 60 * 60; # Year ago in seconds
my $SIZE = 100_000; # 100k bytes

my @old_music = File::Find::Rule->file()
->name (’ * .mp3’, ’ * .ogg’)
->atime("< $YEAR_AGO")
->size ("> $SIZE")
->in (@ARGV);

Do something with @old_music files

You can read more about File::Find::Rule on CPAN
(http://search.cpan.org/perldoc?File::Find::Rule).

Exercises
Use eitherFile::Find or File::Find::Rule for the following exercises.

1. Write a program which print outs the names of plain text files only (hint: use file test operators).
A File::Find starter can be found inexercises/find.pl while aFile::Find::Rule starter
can be found inexercises/findrule.pl .

2. Now use it to print out the contents of each text file. You’llprobably want to pipe your output
throughlessso that you can see it all. (Answer:exercises/answers/find.pl)

opendir and readdir

opendir() is documented on page 755 (page 195, 2nd Ed) of the Camel book. readdir() is
on page 770 (page 202, 2nd Ed). Don’t forget that function help is also available by typing
perldoc -f opendir or perldoc -f readdir

We can also open directories for access by using theopendir() function. Once a directory is open,
we can read file names from it using thereaddir() function.

To read the contents of files in the directory, you still need to open each one using theopen()

function.

$ENV{HOME} stores the home directory on Unix platforms, us e
$ENV{HOMEPATH} for MS Windows
opendir(HOMEDIR, $home) or die "Can’t read dir $home: $!";

my @files = readdir(HOMEDIR);

closedir HOMEDIR;

142 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Directory interaction

foreach my $file (@files) {
Skip over directories and non-plain files (eg devices)
next unless -f "$home/$file";

open(THISFILE, " <", "$home/$file") or die "Can’t open file $home/$file: $!";

Read from the file...

close THISFILE;
}

The HOMEDIRin the previous example is a directory handle not a filehandle, even though they
look the same. Attempting to use a directory handle as a filehandle (or the opposite) will result in
an error.

Scalar directory handles
Under Perl 5.6.1 and above you can provide a scalar as the argument toreaddir . This allows you to
have scalar directory handles which have scope and makes it easier for you to pass them to
subroutines or include them in hashes and arrays. Just like scalar filehandles, these are the preferred
option if you can use them.

my $homedir;
opendir($homedir, $home) or die "Can’t read dir $home: $!";
my @files = readdir($homedir);

Exercises

1. Useopendir() andreaddir() to obtain a list of files in a directory. What order are they in?

2. Use thesort() function to sort the list of files asciibetically (Answer:
exercises/answers/dirlist.pl)

glob and readdir
There are some major differences betweenglob() andreaddir() . glob() is not as fast but gives
you flexibility over which filenames you get back:glob(" * .c") for example, returns only files with
the ".c" extension.glob() also gives you back filenames in asciibetical order, whereasreaddir gives
you back the files in whatever order they’re stored in the internal representation of your system.

glob("some/path/ * ") will return filenames with path intact whereas readdir will return only the
filenames of the files in the directory.

The last difference between these is their behaviour with ". " files. For example".bashrc" .
glob(" * ") will not return these files (althoughglob(". * ") will), whereasreaddir() will always
return ". " files.

Perl Training Australia (http://perltraining.com.au/) 143

Chapter 17. Directory interaction

Table 17-2. Differences between glob and readdir

glob readdir

Slower Faster

Allows you to filter filenames Gives you all filenames

Returns files in asciibetical order Returns files in file-system order

Returns filename with path intact Returns filename only

Does not return dot files when called as
glob(" * ") (althoughglob(" * . * ") does).

Returns all filenames

rewinddir
We can rewind the current position of the directory handle back to the beginning by using the
rewinddir function.

use Fatal qw(open close opendir rewinddir);

opendir(my $home_dh, $directory);
foreach my $filename (readdir($home_dh)) {

next unless -f "$directory/$filename";
open(my $plainfile, " <", "$directory/$filename);
Read from the file...

}

rewinddir $home_dh;
Now we can read through our directory contents again...
if we wish to.

Unfortunately this is rarely as useful as you might at first think. rewinddir does not refresh the
directory listing when it rewinds. To see whether the directory listing has changed since your
program started you’ll have to close the directory and reopen it.

You can find more about rewinddir by reading perldoc -f rewinddir or page 777 (page 208,
2nd Ed) in the Camel book.

Chapter summary

• Angle brackets can also be used as a globbing operator if anything other than a filehandle name
appears between the angle brackets. In scalar context, returns the next file matching the glob
pattern; in list context, returns all remaining matching files.

• File test operators orstat() can be used to find information about files.

• Theopendir() , readdir() andclosedir() functions can be used to open, read from, and close
directories.

• TheFile::Find module can be used to recurse down through directories.

144 Perl Training Australia (http://perltraining.com.au/)

Chapter 18. System interaction

In this chapter...
In this chapter, we look at different ways to interact with the operating system. In particular, we
examine thesystem() function, and the backtick command execution operator. We also look at
security and platform-independence issues related to the use of these commands in Perl.

system()
Thesystem() function allows an external command to be executed. This command will inherit
Perl’s standard filehandles (STDIN, STDOUT and STDERR) and have control of the console until it
terminates. This means thatsystem() can be used to launch interactive commands such as editors if
desired. Perl will wait for the command specified to terminate before continuing:

Open a file for the user to edit.
system(’vi somefile.txt’); # Or ’notepad somefile.txt’

Read the contents of the file once the user has finished.
open(my $input_fh, ’<’, ’somefile.txt’) or die "$!";

Theexec()function works in a similar way, but on success your program is replacedwith the
command specified. This means thatexec()never returns on success. Theexec()function is most
useful when writing wrapper scripts that wish to establish acertain state before executing another
program.

If the command specified bysystem() could not be run the error message will be available via the
special variable$! . This value is not set if the command can be run but fails during runtime. The
return status of the command can be found in the special variable$?, which is also the return value
of system() . This value is a 16-bit status word which needs to be unpackedto be useful, as
demonstrated in the example below.

system("/path/to/some/command");
if ($?) { # A non-zero exit code means failure

-1 means the program didn’t even start!
if($? == -1) {

print "Failed to run program: $!\n";
} else {

print "The exit value was: " . ($? >> 8) . "\n";
print "The signal number that terminated the program was: "

. ($? & 127) . "\n";
print "The program dumped core.\n" if $? & 128;

}
}

Just likeopen the traditional form of callingsystem andexec have security issues due to shell
expansion. For example consider the following code:

Perl Training Australia (http://perltraining.com.au/) 145

Chapter 18. System interaction

print "Please give me a file you want to see: ";

my $filename = <>; # lets pretend: $filename="fred; rm -rf /home/pjf;"

chomp($filename);
system("cat $filename");

In this case, due to shell expansion, the shell will receive the commands:

cat fred
rm -rf /home/pjf

and if our program had sufficient permissions to delete pjf’shome directory, it would.

As a result, there is another, safer, form ofsystem andexec that bypasses the shell. If you give
system or exec a list it assumes that the first element is the command to execute, and every other
element is an argument to that command. These arguments are not passed to the shell, and so shell
expansion will not occur. So:

system(’cat’, ’ * .txt’);

will give the " * .txt" filename tocat rather than all files with a.txt extension. This is essential in
cases like the above where the command may be passed in from a user. In this case, if the file "*.txt"
does not exist then we’ll receive an non-zero return code. Exec fails and returns false only if the
command (in this casecat) does not exist. If the file does not exist, the user will receivecat’s error
message.

It’s always possible to use Perl’sglob function to expand filenames for us, without shell intervention:

system(’cat’, glob(’ * .txt’));

IPC::System::Simple
The IPC::System::Simple module (available from the CPAN) takes the hard work out of running
shell commands:

use IPC::System::Simple qw(run);

run("some_command");

Therun function will execute the command provided and check the result. If the command fails to
start, dies from a signal, dumps core, or returns a non-zero exit status, thenIPC::System::Simple

will throw an exception. Unless you take steps to prevent it,a failure from this command will cause
your program to die with an error. If you want to capture the error, you can do so:

The ’eval’ block allows us to capture errors, which
are then placed in $@. If any of the commands below
fail, the ’eval’ is exited immediately. This means if
we fail to backup the files, we won’t delete them.

eval {
run(’backup_files’);
run(’delete_files’);

};

if ($@) {
warn "Error in running commands: $@\n";

}

146 Perl Training Australia (http://perltraining.com.au/)

Chapter 18. System interaction

You can also useIPC::System::Simple to execute commands that can return a range of acceptable
exit values:

use IPC::System::Simple qw(run);

Run a command, insisting it return 0, 1 or 2:

run([0,1,2], "some_command");

Run a command and capture its exit value:

my $exit_value = run([0,1,2], "some_command");

Specify return values using ’..’ notation:

my $exit_value = run([0..2], "some_command");

Just like regularsystem , therun command uses the standard shell when running a single command,
or invokes the command directly when called in a multiple argument fashion:

Run ’cat * .txt’ via the shell.
run(’cat * .txt’);

Run ’cat’ on the file called ’ * .txt’, bypassing the shell.
run(’cat’,’ * .txt’);

Run ’cat’ on all files matching ’ * .txt’, bypassing the
shell.
run(’cat’,glob(’ * .txt’));

You can read more about IPC::System::Simple at
http://search.cpan.org/perldoc?IPC::System::Simple

*nix exercise

1. Write a script to ask the user for a username on the system, then perform thefinger command to
see information about that user. (Answer:exercises/answers/finger.pl)

MS Windows exercise

1. Write a script to ask the user for a filename on the system. Open the nominated file in Notepad
usingsystem. (Answer:exercises/answers/notepad.pl)

Using backticks
Single quotes can be used to specify a literal string which can be printed, assigned to a variable, et
cetera. Double quotes perform interpolation of variables and certain escape sequences such as\n to
create a string which can also be printed, assigned, etc.

Perl Training Australia (http://perltraining.com.au/) 147

Chapter 18. System interaction

A new set of quotes, calledbackticks, can be used to interpolate variables then run the resultant
string as a shell command. The output of that command can thenbe printed, assigned, and so forth.

Backticks are the backwards-apostrophe character (‘) which appears below the tilde (~), next to the
number1 on most keyboards.

Just as theq() andqq() functions can be used to emulate single and double quotes andsave you
from having to escape quotes that appear within a string, theequivalent functionqx() can be used to
emulate backticks.

In this course we tend to use qx() because it’s much harder to confuse qx() with plain old
single quotes. Using qx() also avoids the problem that in some font sets both single quotes and
backticks look exactly the same.

Backticks are different to thesystem() command, in that they capture the output of the command
they execute, as opposed to passing it through to the user.

When called in a scalar context backticks return the output of the command they execute as a string
with possibly embedded newlines. When called in a list context, the output is returned as a list with
each separate line of output being a new list element.

#!/usr/bin/perl -w
use strict;

Backticks capture the output of the process they run. Here,
we capture the output of the echo command.

my $greeting = qx(echo Hello World);

$greeting now contains the string "Hello World\n"

System runs a command without capturing the output, instea d it’s
passed straight through. The following line uses the echo c ommand
to print a greeting.

system("echo Hello World");

The return status of commands called by using backticks can be determined by examining$? in the
same way as thesystem() example above.

Backticks and the qx() function are discussed in the Camel book on page 80 (pages 52 and
41, 2nd Ed) or in perldoc perlop .

*nix exercises

1. Modify your earlier finger program to use backticks instead of system() (Answer:
exercises/answers/backtickfinger.pl)

2. Change it to useqx() instead (Answer:exercises/answers/qxfinger.pl)

3. The Unix commandwhoami gives your username. Since most shells support backticks, you can
typefinger ‘whoami‘ to finger yourself. Use shell backticks inside yourqx() statement to do
this from within your Perl program. (Answer:exercises/answers/qxfinger2.pl)

148 Perl Training Australia (http://perltraining.com.au/)

Chapter 18. System interaction

MS Windows exercises

1. Modify your earlier program to take a directory path from the user. Use backticks to execute the
DIR command on that path and list out the files in that directory. (Answer:
exercises/answers/backtickdir.pl)

2. Change it to useqx() instead.

3. Time permitting: reverse sort the directory listing contents.

Platform dependency issues
Note that the examples given above will not work consistently on all operating systems. In particular,
the use ofsystem() calls or backticks with Unix-specific commands will not workunder Windows
NT, MacOS, etc. Slightly less obviously, the use of backticks on NT can sometimes fail when the
output of a command is sent explicitly to the screen rather than being returned by the backtick
operation.

To understand more about how to make your Perl programs portable, read perldoc perlport .

Security considerations

This section is not intended as a comprehensive guide to Perl security, rather it is here to show
some of the in-built security features that Perl has available. Even perldoc perlsec does not give
you the whole picture, it just gives you some hints.

The ability to write secure programs is one that is learnt over many years of experience. It’s
always a good idea to have someone well rehearsed in security and your programming
environment to audit your code in case you have missed anything. As well as training, Perl
Training Australia also offers security and privacy auditing services.

Perl Training Australia offers a course in Perl Security that covers many common attacks and
mistakes, and how they can be prevented in Perl.

Many of the examples given above can result in major securityrisks if the commands executed are
based on user input. Consider the example of a simple finger program which asked the user who they
wanted to finger:

#!/usr/bin/perl -w
use strict;

print "Who do you want to finger? ";
my $username = <STDIN>;
print qx(finger $username);

Perl Training Australia (http://perltraining.com.au/) 149

Chapter 18. System interaction

Imagine if the user’s input had beenpjf; cat /etc/passwd , or worse yet,pjf; rm -rf / . The
system would perform both commands as though they had been entered into the shell one after the
other.

A further, not so obvious problem, can be seen when we ask "Which finger program are we
calling?". If our program caller has changed our$ENV{PATH} then it is very possible that it’s not the
usual systemfinger found in /usr/bin/ . It could instead be a maliciousfinger program designed
to exploit our program’s privileges.

Luckily, Perl’s -T flag can be used to check for unsafe user inputs.

#!/usr/bin/perl -wT

Documentation for taint checking can be found by reading the perldoc perlsec , or on pages
557-568 (page 356, 2nd Ed) of the Camel book.

-T stands for "taint checking". Data input by the user is considered "tainted" and until it has been
modified by the script, may not be used to perform shell commands or system interactions of any
kind. This includes system interactions such asopen() , chmod() , and any other built-in Perl function
which interacts with the operating system.

In versions of Perl prior to 5.8.0 files opened for both reading and writing using "+<" were not
checked for tainted filenames.

Taint checking will not occur on filenames where the file is only being opened for reading. This
is due to historical reasons. Good programming practice would have you untaint these filenames
anyway.

The only thing that will clear tainting is referencing substrings from a regexp match. Here’s an
example.

#!/usr/bin/perl -Tw
use strict;

$ENV{PATH} = "/bin:/usr/bin"; # Taint requires we set our pa th.

print "Who do you want to finger?\n";
my $username = <STDIN>;
chomp($username);

Check $username to make sure it’s clean, then finger.

if ($username =~ /^(\w{1,8})$/) {

$1 is the contents of the first set of
parentheses in the regexp.

print qx(finger $1);

} else {
print "That was not a valid username!\n";

}

150 Perl Training Australia (http://perltraining.com.au/)

Chapter 18. System interaction

Make sure you remember to check that the regular expression to untaint your variable
succeeded. In the case above we only have one regular expression, so $1 will either be set by
the match or will be undefined. Nevertheless we still explicitly tested the match for success. This
means that our code won’t break if we add any regular expressions before the code used above.

You can also untaint data by capturing the match in a list context:

Check $username to make sure it’s clean
my ($safeuser) = ($username =~ /^(\w{1,8})$/);

safeuser is now either undefined if the match failed or
the value of $1 if the match succeeded.
if ($safeuser) {

print qx(finger $safeuser);
} else {

print "That was not a valid username!\n";
}

Note that you’ll have to explicitly set the environment’sPATHvariable (found in$ENV{PATH}) to
something safe (like/usr/bin) as well. This variable affects where the shell looks for other
executable programs.finger is found in/usr/bin on our system.

We have to set a safe value for$ENV{PATH} because this value can be changed by the user in their
environment before running the Perl script. If the user setstheir PATHto /home/pjf/bin then we’d
run the/home/pjf/bin/finger command rather than the/usr/bin/finger command.

For safety’s sake, taint checking in Perl always assumes that thePATHenvironment variable has been
tampered with by the user.

If you’ve been calling your Perl program from the command line with perl program.pl you’ll be
told that you’re turning taint checking on too late, even if you’ve put it in your shebang line.

This is because Perl wants to know that you want to use taint checking as soon as possible. The
way to fix this is to include the -T option in your call, so: perl -T program.pl.

SETUID scripts automatically run with taint checking turned on for your own protection.

Under Perl 5.8.0 and above, there is also the -t switch, which causes tainted operations to
generate warnings instead of errors. This is no substitute for real taint checking, but can be
useful if you’re trying to lock down legacy code and see which areas require attention.

Exercise

1. Implement taint checking on your answer to the previous exercise.

Perl Training Australia (http://perltraining.com.au/) 151

Chapter 18. System interaction

2. Ask the user for a filename, open the file and write a short message to it. Turn on taint checking
and try running your script. What sort of regular expressioncould you use to check for valid
filenames? (Answer:exercises/answers/taintfile.pl)

Safe.pm
For greater security when using unknown (and possibly hostile) code, or for writing code which
adheres to strict standards about what it’s allowed to do, there is theSafemodule. This module
allows the creation of compartments in which Perl code can beevaluated. These compartments allow
you to define explicitly what the code run within them may and may not do. For example, you may
deny access to the file system so that the code may not read or write to files. Or you may only permit
the code to use certain operators such that it may add and subtract but not divide, for example.
Attempts by the code to perform forbidden tasks result in a compilation error at compile time and a
fatal error at run time.

Note that it is always a good idea to audit code that you receive from a third party before executing it
on your machine.

Learning how to use the Safe module is a course in itself. For more information on this
module read perldoc Safe and pages 576-581 (489-493 2nd Ed) of the Camel book.

Chapter summary

• Thesystem() function can be used to perform system commands.$! is set if any error occurs.

• The backtick operator can be used to perform a system commandand return the output. Theqx()

quoting function/operator works similarly to backticks.

• The above methods may not result in platform independent code.

• Data input by users or from elsewhere on the system can cause security problems. Perl’s-T flag
can be used to check for such "tainted" data

• Tainted data can only be untainted by referencing a substring from a pattern match.

152 Perl Training Australia (http://perltraining.com.au/)

Chapter 19. Practical exercises

About these exercises
These exercises are designed to complement the existing course exercises and provide a broader
coverage of Perl. They are designed to range in level of difficulty and may require skills we haven’t
yet covered in the course. When you find that you don’t have theknowledge to solve a problem, feel
free to move onto another puzzle instead.

Although these exercises should be fun to work on, please work first on the course exercises you’ve
been assigned. The course exercises are designed to enhanceyour understanding of the material just
covered, and are essential in consolidating your understanding of Perl.

Palindromes
A palindrome is an integer or string which reads the same bothforwards and backwards. For
example 1441, and "Hannah". If we allow multi-word palindromes we can also have sentences such
as "Able was I ere I saw Elba". Each of these are "true" palindromes as (ignoring case) each string
reads exactly the same forwards as it does backwards.

If we extend the definition of a palindrome such that any sequence of word characters is considered,
regardless of spacing and punctuation we can get a much widerrange. For example each of the
following are palindromes: "race car", "Madam, in Eden I’m Adam", "Was it a cat I saw?", "Did I
do, O God, did I as I said I’d do? Good, I did."

1. Write a program which detects whether a string is a true palindrome irrespective of case.

2. Extend your program to detect whether a string is a palindrome by ignoring capitalization and
spacing. If we haven’t covered regular expressions yet, youmay find thesplit andjoin

functions handy.

3. Now allow for punctuation. You’ll probably want to use a regular expression for this task.

4. In assembler the solution to this problem would be to walk two pointers along the string starting
at opposite ends and comparing character by character. Punctuation would be handled by
incrementing the pointers at each point until they reached the next word character. Comparison
would stop with failure if two characters were unequal, and with success if the pointers reached
the same location or passed each other. This is called an "in place comparison".

Using eithersubstr or using split then walking over an array; write a program which
determines if a string is a palindrome using in-place comparison only.

Hangman
The game of hangman is a common pastime for young children. The game master picks a word and
the player has to guess the word by choosing letters that may be in that word. If the letter is correct
the game master writes the letter into all the correct positions of the word. If the guess is wrong,
more of the hanged man is drawn. In this exercise we won’t drawthe hangman, but we’ll keep track
of the guesses remaining and the letters guessed.

Perl Training Australia (http://perltraining.com.au/) 153

Chapter 19. Practical exercises

1. Write a program which reads in the contents of a text file andrandomly picks a word. You can
read a file passed in on the command line withwhile(<>) .

Make sure that words of less than 4 letters and those containing punctuation are not chosen. If
you’re working on a Unix-like machine you may want to pick a word from the
/usr/share/dict/words file.

2. Extend your program to allow the user to play hangman. At the start of each turn, report to the
user the number of letters the selected word has, which letters they have already guessed (and
their locations if successful) and the number of guesses remaining. For example your output
may look like:

e _ e _ _ _ _ t (8 letters). Guesses (e, t, s).
7 guesses remaining.

3. Accept options on the command line for the maximum number of guesses, and the minimum
and maximum word length. You may findGetopt::Std useful for this.

4. If the player wins, ask them for their name and add their name to a high-score table. This table
should list the players name, the length of the word and the number of wrong guesses they
made. Write the information out to a file so that you can display all the high scores (sorted by
word length and wrong guesses) at the successful completionof each game. You may find
Storable to be helpful.

An example high score table might look like:

Name Word length Mistakes

Paul Fenwick 10 3
Jacinta Richardson 10 5
Jacinta Richardson 9 2
Paul Fenwick 8 4

154 Perl Training Australia (http://perltraining.com.au/)

Chapter 20. Conclusion

Where to now?
To further extend your knowledge of Perl, you may like to:

• Work through the material included in the appendices of thisbook.

• Visit the websites in our "Further Reading" section (below).

• Follow some of the URLs given throughout these course notes,especially the ones marked
"Readme".

• Install Perl on your home or work computer.

• Practice using Perl from day to day.

• Join a Perl user group such as Perl Mongers (http://www.pm.org/).

• Join an on-line Perl community such as PerlMonks (http://www.perlmonks.org/).

• Extend your knowledge with further Perl Training Australiacourses such as:

• Web Development with Perl

• Database Programming with Perl

• Perl Security

• Object Oriented Perl

Information about these courses can be found on Perl Training Australia’s website
(http://www.perltraining.com.au/).

Further reading

Books

• Larry Wall, Tom Christiansen and Jon Orwant,Programming Perl(3rd Ed), O’Reilly and
Associates, 2000. ISBN 0-596-00027-8

• Tom Christiansen and Nathan Torkington,The Perl Cookbook, O’Reilly and Associates, 1998.
ISBN 1-56592-243-3.

• Jeffrey Friedl,Mastering Regular Expressions, O’Reilly and Associates, 1997. ISBN
1-56592-257-3.

• Joseph N. Hall and Randal L. SchwartzEffective Perl Programming, Addison-Wesley, 1997.
ISBN 0-20141-975-0.

• Damian Conway,Perl Best Practices, O’Reilly and Associates, 2005. ISBN 0-59600-173-8.

Perl Training Australia (http://perltraining.com.au/) 155

Chapter 20. Conclusion

Online

• The Australian Perl Portal (http://www.perl.net.au/)

• Perl Mongers Perl user groups (http://www.pm.org/)

• PerlMonks online community (http://www.perlmonks.org/)

• Comprehensive Perl Archive Network (http://search.cpan.org)

• The Perl homepage (http://www.perl.com/)

• The Perl Directory (http://www.perl.org/)

• Perl Quality Assurance Projects (http://qa.perl.org/)

156 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Advanced Perl variables

In this chapter...
In this chapter we will explore Perl’s variable types a little further. We’ll look at hash slices and cool
ways to assign values into and from arrays and hashes. But first we’ll look at how we can make
quoting a little nicer.

Quoting with qq() and q()

Using double quotes or single quotes when quoting some strings can result in lots of character
escaping. Which quotes are best for quoting the following paragraph?

Jamie and Peter’s mother couldn’t drive them to the show.
"How are we going to get there?" Jamie asked.
"We could ride our bikes", Peter suggested.
But Peter’s bike had a flat tyre.

If we use double quotes it comes out looking like this:

print "Jamie and Peter’s mother couldn’t drive them to the sh ow.
\"How are we going to get there?\" Jamie asked.
\"We could ride our bikes\", Peter suggested.
But Peter’s bike had a flat tyre.";

but that’s just ugly. Single quotes aren’t much better:

print ’Jamie and Peter\’s mother couldn\’t drive them to the show.
"How are we going to get there?" Jamie asked.
"We could ride our bikes", Peter suggested.
But Peter\’s bike had a flat tyre.’;

In order to encourage beautiful code that you can be proud of,Perl allows you to pick your own
quote operators, when you need to, by providing you withq() andqq() . q() represents single quotes
andqq() represents double quotes. Note that the same rules apply foreach of these quoting styles as
for their more common equivalents:qq() allows variable interpolation and control character
expansion (such as the newline character) whereasq() does not. These are often called "pick your
own quotes" or "roll your own quotes".

Using pick your your own quotes, quoting the above paragraphbecomes easy:

qq(Jamie and Peter’s mother couldn’t drive them to the show.
"How are we going to get there?" Jamie asked.
"We could ride our bikes", Peter suggested.
But Peter’s bike had a flat tyre.);

You may use any non-whitespace, non-alphanumeric character as your delimiters. Pick one not
likely to appear in your string. Note that things that look like they should match up do. So(matches
) , { matches} and finally< matches>. There are some illustrated below.

print q/Jamie said "Using slashes as quoting delimiters is v ery common."/;
print q(Jamie said "You should always watch your quotes!");
print qq!Jamie said "$these are Paul’s favourite quotes". (He was wrong).\n!;
print qq[Jamie said "Perl programs ought to start with #!"\n];
print qq#Jamie said "My favourite regexp is ’/[jamie] * /i;’"\n#;

Perl Training Australia (http://perltraining.com.au/) 157

Appendix A. Advanced Perl variables

If you use matching delimiters around your quoted text Perl will allow you to include those
delimiters in your quoted text if they are also paired.

print qq(There was a (large) dog in the yard\n); # This will wo rk

If the delimiters within your quoted text are not paired, this will result in errors.

print qq< 1 + 4 < 10 >; # This will not work

The problem with the last example is that Perl assumes that the closing > is paired with the
second < and waits to see a later > to close the string.

A different way of quoting strings areHEREdocuments. These can sometimes be confusing for the
reader, and usually pick your own quotes will be clearer. We coverHEREdocuments here for the sake
of completeness, and because they are still very common in older code. If you’ve done a lot of shell
programming you may recognise this construct.HEREdocuments allow you to quote text up to a
certain marking string. For example:

print << "END";
I can print any text I want to put here without
fear of "weird" things happening to it. All
punctuation is fine, unlike roll-your-own quotes,
where you have to pick some kind of punctuation to
delimit it. Here, we just have to make sure that
the word, up there (next to print) does not appear
in this text, on a line by itself and unquoted.
Otherwise we terminate our text.
END

The quoting style used in HERE documents is whatever you quote the terminating word with next to
the print statement (in this case double quotes). Using double quotes results in variable interpolation,
whereas using single quotes results in no variable interpolation.

Exercises

1. Experiment with usingq() andqq() to print the following string:

\/ <+c&b^$!a@_#‘ * ’"~{ [()] }~"’ * ‘#_@a!$^b&c+ >\/

you’ll find this string in the file:exercises/quoteme.pl

You’ll find answers to the above inexercises/answers/quoted.pl .

Scalars in assignment
You may find yourself wishing to declare and initialise a number of variables at once:

my $start = 0;
my $end = 100;
my $mid = 50;

but you don’t want to take up three lines to do it in. Perl lets you do the following:

my ($start, $end, $mid) = (0, 100, 50);

158 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Advanced Perl variables

which says create the variables$start , $end and$mid and assign them values from the list on the
right dependent on their list position. You’ll see this kindof thing all the time. If the list on the right
is longer than the list on the left, the extra values are ignored. If the list on the left is longer than the
list on the right, the extra variables get no value.

my ($a, $b, $c) = (1, 2, 3, 4, 5); # $a = 1, $b = 2, $c = 3.
values 4 and 5 are ignored.

my ($d, $e, $f, $g) = (1, 3, 5); # $d = 1, $e = 3, $f = 5.
$g gets no value.

If the variables are already declared withmy elsewhere, you can still use the above method to assign
to them.

($a, $b, $c) = (1, 4, $d); # $a = 1, $b = 4, $c = $d.

In fact, this gives us a very simple way to swap the values of two variables without needing a
temporary variable:

($a, $b) = ($b, $a);

You’ll notice above that in all the examples we’ve grouped our lists within parentheses. These
parentheses are required.

Arrays in assignment
Just as we could assign a list of values to a list of scalars, wecan assign elements from arrays to a list
of scalars as well. Once again if we provide more values on theright than we provide variables on
the left, the extra ones are ignored. If we provide more variables on the left than values on the right,
the extra variables are given no value.

my ($fruit1, $fruit2, $fruit3) = @fruits; # assign from arra y
my ($number1, $number2) = @magic_numbers[-2, -1]; # assign from array slice
my @short = (1,2);
my ($a, $b, $c) = @short; # $c gets no value
($a, $b) = @random_scalars; # changes $a and $b.

Sometimes we would like to make sure that we get enough valuesin our list to initialise all of our
variables. We can do this by supplementing our list with reasonable defaults:

my @short = (1, 2);
my ($a, $b, $c, $d, $e, $f) = (@short, 0, 0, 0, 0, 0, 0);

this way, even if@short is completely empty we know that our variables will all be initialised.

So what happens if you put an array on the left hand side? Well,you end up with an array copy.

my @other_fruits = @fruits; # copies @fruits into @other_fr uits
my @small_fruits = @fruits[0..2]; # copies apples, oranges and guavas into

@small_fruits.

What happens if you put two arrays on the left and two on the right? Do you end up with two array
copies? Can you use this to swap the contents of two arrays? Unfortunately no.

Perl Training Australia (http://perltraining.com.au/) 159

Appendix A. Advanced Perl variables

(@a, @b) = (@c, @d); # Does @a = @c, @b = @d ? No.
Instead:
@a = @c and @d joined together
@b is made empty

(@a, @b) = (@b, @a); # Are array contents swapped? No.
Instead:
@a becomes @b and @a joined together
@b is made empty.

When two arrays are put together into a list, they are "flattened" and joined together. This is great if
you wish to join two arrays together:

my @bigger = (@small1, @small2, @small3); # join 3 arrays tog ether

but a bit awkward if you were hoping to swap their contents. Toget two array copies or to swap the
contents of two arrays, you’re going to have to do it the long way.

Hash slices
Hash slices are used less frequently than array slices and are usually considered more confusing. To
take a hash slice we do the following:

Our hash
my %people = (

James => 30,
Ralph => 5,
John => 23,
Jane => 34,
Maria => 26,
Bettie => 29

);

An array (some of the people in %people)
my @friends = qw/Bettie John Ralph/;

Taking a hash slice on the %people hash using the array @frie nds to
give us the keys.
my @ages = @people{@friends}; # @ages contains: 29, 23, 5

my @ages_b = @people{qw/Bettie John Ralph/;}; # essentiall y the same as above

You’ll notice that when we did the hash slice we used an@symbol out the front rather than a%sign.
This isn’t a typographical error. The reason we use an@sign is because we’re expect a list (of values)
out. Perl knows that we’re looking at the hash called%people rather than any array called@people

because we’ve used curly braces rather than square brackets.

We can also assign values to a hash slice in the same way we can assign values to a list. This allows
us to use hash slices when we wish to see if a number of things exist in an array without traversing
the array each time. This is important because if the array islarge, searching through all of it
multiple times may be infeasible.

The array of things we’d like to test against
my @colours = qw/red green yellow orange/;

A list of things that might be in @colours or not
my @find = qw/red blue green black/;

160 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Advanced Perl variables

my %colours; # hashes and arrays can have the same names.
hash slices use curly braces {} and
array slices use square brackets []

@colours{@colours} = (); # set all values in %colours from th e keys in
@colours to have the undefined value (but exist in
the hash).

We now look for @find in %colours rather than
@colours. This is much faster.

foreach my $colour (@find) {
if(exists($colours{$colour})) {

print "true ";
}
else {

print "false ";
}

}

Exercise
We can use the fact that hash keys are unique to remove duplicates from an array.

1. Taking the list:

qw/one one one two three three three four four five five five/ ;

use a hash slice to print out only the unique values. (Don’t worry about the order they come out
in).

2. Use a hash and a foreach loop to print out the unique values of the above list in first-seen order
(ie: one two three four five).

Answers for the above questions can be found inexercises/answers/duplicates.pl .

Hashes in assignment
Assignment from hashes is a little different to assignment from arrays. If you try the following:

my ($month1, $month2) = %monthdays;

you won’t get the names of two months. When a hash is treated asa list it flattens down into a list of
key-value pairs. This means that$month1 will certainly be the name of a month, but$month2 will be
the number of days in$month1 .

To get all they keys of a hash we use thekeys function. If we wanted two of these we can do the
following:

my ($month1, $month2) = keys %monthdays;

To get two values from this hash (which would match the keys we’ve pulled out above) we use the
values function.

my ($days1, $days2) = values %monthdays;

Perl Training Australia (http://perltraining.com.au/) 161

Appendix A. Advanced Perl variables

As thevalues function only returns the values inside the hash and we cannot easily determine from
a value which key it had, using thevalues function loses information. Usually the values in a hash
are accessed through their keys:

my $days1 = $monthdays{January};
my $days2 = $monthdays{February};

my ($days1, $days2) = @monthdays{qw/January February/}; # a shorter way
if we want a few

We can use the fact that hashes flatten into lists when used in list context to join hashes together.

my %bigger = (%smaller, %smallest);

Note, however, that because each hash key must be unique thatthis may result in some data loss.
When two hash keys clash the earlier one is over written with the later one. In the case above, any
keys in%smaller that also appear in%smallest will get the values in%smallest . This is great news
if you have a hash of defaults you want to use if any values are missing.

my %defaults = (
name => "John Doe",
address => "No fixed abode",
age => "young",

);

my %input = (
name => "Paul Fenwick",
address => "c/o Perl Training Australia",

);

%input = (%defaults, %input); # join two hashes, replacing d efaults
with provided values
age was missing; gets set to "young"

To copy a hash you can just assign its value to the copy hash. However, attempts to perform a double
copy in one step or to swap the values of two hashes without a temporary hash result in the same
issues as with arrays due to list flattening.

Chapter summary

• Usingq() andqq() allows the programmer to chose quoting characters other than " and’ .

• Perl allows paired delimiters to also appear in the quoted text when usingq() andqq() so long as
those characters are also paired.

• Perl allows programmers to initialise scalar variables from lists and to provide less or more values
than required if desired.

• You can swap the value of two scalar variables by assigning their values to each other in a list
assignment.

• Arrays can be copied by assigning one array to another.

• Arrays flatten to one big list when combined in list context.

• Hash slices allow us to access several values from a hash in one step.

• Hashes can be copied by assigning one hash to another.

162 Perl Training Australia (http://perltraining.com.au/)

Appendix B. Named parameter passing and
default arguments

In this chapter...
In this chapter we look at how we can improve our subroutines by using named parameter passing
and default arguments. This is commonly used in object oriented Perl programming but is of great
use whenever a subroutine needs to take many arguments, or when it is of use to allow more than one
argument to be optional.

Named parameter passing
As you will have seen, Perl expects to receive scalar values as subroutine arguments. This doesn’t
mean that you can’t pass in an array or hash, it just means thatthe array or hash will be flattened into
a list of scalars. We can reconstruct that list of scalars into an array or hash so long as it was the final
argument passed into the subroutine.

Most programming languages, including Perl, pass their argumentsby position. So when a function
is called like this:

interests("Paul","Perl","Buffy");

the interests() function gets its arguments in the same order in which they were passed (in this
case,@_is ("Paul","Perl","Buffy")). For functions which take a few arguments, positional
parameter passing is succinct and effective.

Positional parameter passing is not without its faults, though. If you wish to have optional
arguments, they can only exist in the end position(s). If we want to take extra arguments, they need
to be placed at the end, or we need to change every call to the function in question, or perhaps write a
new function which appropriately rearranges the argumentsand then calls the original. That’s not
particularly elegant. As such, positional passing resultsin a subroutine that has a very rigid interface,
it’s not possible for us to change it easily. Furthermore, ifwe need to pass in a long list of arguments,
it’s very easy for a programmer to get the ordering wrong.

Named parameter passing takes an entirely different approach. With named parameters, order does
not matter at all. Instead, each parameter is given a name. Our interests() function above would be
called thus:

interests(name => "Paul", language => "Perl", favourite_s how => "Buffy");

That’s a lot more keystrokes, but we gain a lot in return. It’simmediately obvious to the reader the
purpose of each parameter, and the programmer doesn’t need to remember the order in which
parameters should be passed. Better yet, it’s both flexible and expandable. We can let any parameter
be optional, not just the last ones that we pass, and we can addnew parameters at any time without
the need to change existing code.

The difference between positional and named parameters is that the named parameters are read into
a hash. Arguments can then be fetched from that hash by name.

interests(name => "Paul", language => "Perl", favourite_s how => "Buffy");

Perl Training Australia (http://perltraining.com.au/) 163

Appendix B. Named parameter passing and default arguments

sub interests {
my (%args) = @_;

my $name = $args{name} || "Bob the Builder";
my $language = $args{language} || "none that we know";
my $favourite_show = $args{favourite_show} || "the ABC New s";

print "${name}’s primary language is $language. " .
"$name spends their free time watching $favourite_show\n" ;

}

Calling a subroutine or method with named parameters does not mean we’re passing in an
anonymous hash. We’re passing in a list of name => value pairs. If we wanted to pass in an
anonymous hash we’d enclose the name-value pairs in curly braces {} and receive a hash
reference as one of our arguments in the subroutine.

Some modules handle arguments this way, such as the CGI module, although CGI also accepts
name => value pairs in many cases.

It is important to notice the distinction here.

Default arguments
Using named parameters, it’s very easy for us to use defaultsby merging our hash of arguments with
our hash of arguments, like this:

my %defaults = (pager => "/usr/bin/less", editor => "/usr/b in/vim");

sub set_editing_tools {
my (%args) = @_;

Here we join our arguments with our defaults. Since when
building a hash it’s only the last occurrence of a key that
matters, our arguments will override our defaults.
%args = (%defaults, %args);

print out the pager:
print "The new text pager is: $args{pager}\n";

print out the editor:
print "The new text editor is: $args{editor}\n";

}

Subroutine declaration and prototypes
Many programming languages allow or require you to predeclare your subroutines/functions. These
declarations, also called prototypes, tell the compiler what types of arguments the subroutine is
expecting. Should the subroutine then be passed too few, toomany or the wrong kind of arguments; a
compile-time error is generated and the program does not run.

While prototypes in Perl do exist, they are not the same as theabove mentioned function
declarations. Prototypes allow developers to write subroutines which mimic Perl’s built-in functions,

164 Perl Training Australia (http://perltraining.com.au/)

Appendix B. Named parameter passing and default arguments

but they don’t work the same was as they do in other languages.When used with regular subroutines,
the consequences can be surprising and difficult to understand.

It is recommended that you avoid using Perl’s subroutines prototypes.

Should you have a requirement to validate your subroutine parameters the Params::Validate

module, available from CPAN, will do all that you want and more.

Chapter summary

• Parameters in Perl are usually passed "by position".

• Positional parameter passing makes having independent optional arguments or extra arguments
difficult.

• Using positional parameter passing requires the programmer to remember or look up the
parameter order when dealing with subroutines that take many arguments.

• Named parameter passing makes independent optional arguments and extra arguments easy.

• Named parameter passing allows the programmer to list the arguments in an easy to understand
and change manner.

• Using named parameter passing, it becomes very easy to create default values for parameters.

Perl Training Australia (http://perltraining.com.au/) 165

Appendix B. Named parameter passing and default arguments

166 Perl Training Australia (http://perltraining.com.au/)

Appendix C. Complex data structures
References are most often used to create complex data structures. Since references are scalars, they
can be used as values in both hashes and arrays. This makes it possible to create both deep and
complex multi-dimensional data structures. We’ll cover some of these in further detail in this chapter.

Complex data structures are covered in detail in chapter 9 (chapter 4, 2nd Ed) of the Camel
book.

Arrays of arrays
The simplest kind of nested data structure is the two-dimensional array or matrix. It’s easy to
understand, use and expand.

Creating and accessing a two-dimensional array
To create a two dimensional array, use anonymous array references:

my @AoA = (
[qw(apple orange pear banana)],
[qw(mouse rat hamster gerbil rabbit)],
[qw(camel llama panther sheep)],

);

print $AoA[1]->[3]; # prints "gerbil"

The arrow is optional between brackets or braces so the above access could equally well have
been written:

print $AoA[1][3];

Adding to your two-dimensional array
There are several ways you can add things to your two-dimensional array. These also apply to three
and four and five and n-dimensional arrays. You can push an anonymous array into your array:

push @AoA, [qw/lions tigers bears/];

or assign it manually:

$AoA[5] = [qw/fish chips vinegar salt pepper-pop/];

You can also add items into your arrays manually:

$AoA[0][5] = "mango";

Perl Training Australia (http://perltraining.com.au/)
167

Appendix C. Complex data structures

or by pushing:

push @{$AoA[0]}, "grapefruit";

You’re probably wondering about why we needed the curly braces in our last example. This is
because we want to tell Perl that we’re looking at the element$AoA[0] and asking it to deference that
into an array. When we write@$AoA[0] Perl interprets that as@{$AoA}[0] which assumes that$AoA

is a reference to an array we’re trying to take an array slice on it. It’s usually a good idea to use curly
braces around the element you’re dereferencing to save everyone from this confusion.

Printing out your two-dimensional array
Printing out a single element from your two-dimensional array is easy:

print $AoA[1][2]; # prints "hamster"

however, if you wish to print our your data structure, you can’t just do this:

print @AoA;

as what you’ll get is something like this:

ARRAY(0x80f606c)ARRAY(0x810019c)ARRAY(0x81001f0)

which are stringified references. Instead you’ll have to create a loop to print out your array:

foreach my $list (@AoA) {
print "@$list";

}

Hashes of arrays
Arrays of arrays have their uses, but require you to rememberthe row number for each separate list.
Hashes of arrays allow you to associate information with each list so that you can look up each array
from a key.

Creating and accessing a hash of arrays
To create a hash of arrays create a hash whose keys are anonymous arrays:

my %HoA = (
fruits => [qw(apple orange pear banana)],
rodents => [qw(mouse rat hamster gerbil rabbit)],
books => [qw(camel llama panther sheep)],

);

print $HoA{rodents}[3]; # prints "gerbil"

168 Perl Training Australia (http://perltraining.com.au/)

Appendix C. Complex data structures

Adding to your hash of arrays
Adding things to your hash of arrays is easy. To add a new row, just assign an anonymous array to
your hash:

$HoA{oh_my} = [qw/lions tigers bears/];

To add a single element to an array, either add it in place or push it on the end:

$HoA{fruits}[4] = "grapefruit";
push @{$HoA{fruits}}, "mango";

Once again you’ll notice that we needed an extra set of curly braces to make it clear to Perl that we
wanted$HoA{fruits} dereferenced to an array.

Printing out your hash of arrays
Printing out a single element from your hash of arrays is easy:

print $HoA{fruits}[2]; # prints "pear"

Printing out all the element once again requires a loop:

foreach my $key (keys %HoA) {
print "$key => @{$HoA{$key}}\n";

}

Arrays of hashes
Arrays of hashes are particularly common when you have number of ordered records that you wish
to process sequentially, and each record consists of key-value pairs.

Creating and accessing an array of hashes
To create an array of hashes create an array whose values are anonymous hashes:

my @AoH = (
{

name => "John",
age => 31,

},
{

name => "Mary",
age => 23,

},
{

name => "Paul",
age => 27,

},
);

print $AoH[2]{name}; # prints "Paul"

Perl Training Australia (http://perltraining.com.au/) 169

Appendix C. Complex data structures

Adding to your array of hashes
To add a new hash to your array, add it manually or push it on theend. To add an element to every
hash use a loop:

$AoH[3] = { # adding a new hash manually
name => "Jacinta",
age => 26,

};

push @AoH, { # pushing a new hash on to the end
name => "Judy",
age => 47

};

$AoH[0]{favourite_colour} = "blue"; # adding an element to one hash

foreach my $hashref (@AoH) { # adding an element to every hash
$hashref->{language} = "Perl";

}

Printing out your array of hashes
To print a array of hashes we need two loops. One to loop over every element of the array and a
second to loop over the keys in the hash:

foreach my $hashref (@AoH) {
foreach $key (keys %$hashref) {

print "$key => $hashref->{$key}\n";
}

}

Hashes of hashes
Hashes of hashes are an extremely common sight in Perl programs. Hashes of hashes allow you to
have a number of records indexed by name, and for each record to contain sub-records. As hash
lookups are very fast, accessing data from the structures isalso very fast.

Creating and accessing a hash of hashes
To create a hash of hashes, assign anonymous hashes as your hash values:

my %HoH = (
Jacinta => {

age => 26,
favourite_colour => "blue",
sport => "swimming",
language => "Perl",

},
Paul => {

age => 27,
favourite_colour => "green",
sport => "cycling",
language => "Perl",

},

170 Perl Training Australia (http://perltraining.com.au/)

Appendix C. Complex data structures

Ralph => {
age => 7,
favourite_colour=> "yellow",
sport => "little athletics",
language => "English"

},
);

print $HoH{Ralph}{sport}; # prints "little athletics"

Adding to your hash of hashes
$HoH{Ralph}{favourite_food} = "Tomato sauce"; # adding to Ralph’s hash

$HoH{Tina} = { # adding a new person hash
age => 19,
favourite_colour => "black",
sport => "tai chi",

};

Printing out your hash of hashes
Once again, to print out a hash of hashes we’ll need two loops,one for each key of the primary hash
and the second for each key of the inner hash.

foreach my $person (keys %HoH) {
print "We know this about $person:\n";
foreach $key (keys %{ $HoH{$person} }) {

print "${person}’s $key is $HoH{$person}{$key}\n";
}
print "\n";

}

More complex structures
Armed with an understanding of the nested data structures we’ve just covered you should be able to
create the best data structure for what you need. Perhaps youneed a hash of hashes but where some
of your values are arrays. This should pose no problems. Perhaps you want an array of hashes of
arrays? This too should be easy.

Perl Training Australia (http://perltraining.com.au/) 171

Appendix C. Complex data structures

172 Perl Training Australia (http://perltraining.com.au/)

Appendix D. More functions

The grep() function
Thegrep() function is used to search a list for elements which match a certain regexp pattern. It
takes two arguments - a pattern and a list - and returns a list of the elements which match the pattern.

The grep() function is on page 730 (page 178, 2nd Ed) of your Camel book.

trivially check for valid email addresses
my @valid_email_addresses = grep /\@/, @email_addresses;

Thegrep() function temporarily assigns each element of the list to$_ then performs matches on it.

There are many more complicated uses for the grep function. For instance, instead of a pattern you
can supply an entire block which is to be used to process the elements of the list.

my @long_words = grep { (length($_) > 8); } @words;

grep() doesn’t require a comma between its arguments if you are using a block as the first argument,
but does require one if you’re just using an expression. Havea look at the documentation for this
function to see how this is described.

Exercises

1. Usegrep() to return a list of elements which contain numbers (Answer:
exercises/answers/grepnumber.pl)

2. Usegrep() to return a list of elements which are

a. keys to a hash (Answer:exercises/answers/grepkeys.pl)

b. readable files (Answer:exercises/answers/grepfiles.pl)

The map() function
Themap() function can be used to perform an action on each member of a list and return the results
as a list.

my @lowercase = map lc, @words;
my @doubled = map { $_ * 2 } @numbers;

map() is often a quicker way to achieve what would otherwise be doneby iterating through the list
with foreach .

foreach (@words) {
push (@lowercase, lc($_);

}

Perl Training Australia (http://perltraining.com.au/) 173

Appendix D. More functions

Like grep() , it doesn’t require a comma between its arguments if you are using a block as the first
argument, but does require one if you’re just using an expression.

Exercises

1. Create an array of numbers. Usemap() to calculate the square of each number. Print out the
results.

174 Perl Training Australia (http://perltraining.com.au/)

Appendix E. Unix cheat sheet
A brief run-down for those whose Unix skills are rusty:

Table E-1. Simple Unix commands

Action Command

Change to home directory cd

Change todirectory cd directory

Change to directory above current directory cd ..

Show current directory pwd

Directory listing ls

Wide directory listing, showing hidden files ls -al

Showing file permissions ls -al

Making a file executable chmod +xfilename

Printing a long file a screenful at a time more filename or lessfilename

Getting help forcommand man command

Perl Training Australia (http://perltraining.com.au/) 175

Appendix E. Unix cheat sheet

176 Perl Training Australia (http://perltraining.com.au/)

Appendix F. Editor cheat sheet
This summary is laid out as follows:

Table F-1. Layout of editor cheat sheets

Running Recommended command line for starting it.

Using Really basic howto. This is not even an attempt at
a detailed howto.

Exiting How to quit.

Gotchas Oddities to watch for.

Help How to get help.

vi (or vim)

Running
% vi filename

or

% vim filename (where available)

Using

• i to enter insert mode, then type text, pressESC to leave insert mode.

• x to delete character below cursor.

• dd to delete the current line

• Cursor keys should move the cursor whilenot in insert mode.

• If not, try hjkl , h = left, l = right, j = down,k = up.

• / , then a string, thenENTER to search for text.

• :w thenENTER to save.

Exiting

• PressESC if necessary to leave insert mode.

• :q thenENTER to exit.

• :q! ENTER to exit without saving.

• :wq to exit with save.

Perl Training Australia (http://perltraining.com.au/) 177

Appendix F. Editor cheat sheet

Gotchas
vi has an insert mode and a command mode. Text entry only works ininsert mode, and cursor motion
only works in command mode. If you get confused about what mode you are in, pressingESC twice
is guaranteed to get you back to command mode (from where you press i to insert text, etc).

Help
:help ENTER might work. If not, then see the manpage.

nano (pico clone)

Running
% nano -w filename

Using

• Cursor keys should work to move the cursor.

• Type to insert text under the cursor.

• The menu bar haŝX commands listed. This means hold downCTRL and press the letter
involved, egCTRL -W to search for text.

• CTRL -O to save.

Exiting
Follow the menu bar, if you are in the midst of a command. UseCTRL -X from the main menu.

Gotchas
Line wraps are automatically inserted unless the -w flag is given on the command line. This often
causes problems when strings are wrapped in the middle of code and similar.

Help
CTRL -G from the main menu, or just read the menu bar.

178 Perl Training Australia (http://perltraining.com.au/)

Appendix G. ASCII Pronunciation Guide

Table G-1. ASCII Pronunciation Guide

Character Pronunciation

hash, pound, sharp, number

! bang, exclamation

* star, asterisk

$ dollar

@ at

% percent, percentage sign

& ampersand

" double-quote

’ single-quote, tick, forward tick

() open/close parentheses, round brackets, bananas

< less than

> greater than

- dash, hyphen

. dot

, comma

/ slash, forward-slash

\ backslash, slosh

: colon

; semi-colon

= equals

? question-mark

^ caret (pron. carrot), hat

_ underscore

[] open/close bracket, square bracket

{ } open/close curly brackets, brace

| pipe, vertical bar, bar

~ tilde, wiggle, squiggle

‘ backtick

Perl Training Australia (http://perltraining.com.au/) 179

Appendix G. ASCII Pronunciation Guide

180 Perl Training Australia (http://perltraining.com.au/)

Colophon

mJXXLm. .mJXXLm
JXXXXXXXXL. JXXLm. .mJXXL .JXXXXXXXXL

{XXXXXXXXXXX. JXXXmXXXXm mXXXXmXXXL .XXXXXXXXXXX}
.XXXXXXXXXXXXXL. {XXXXXXXXXF 7XXXXXXXXX} .JXXXXXXXXXXXXX.

JXXXXXXXXXXXXXXXXL.‘XXXXXX. .XXXXXX’.JXXXXXXXXXXXXXXXXL
JXXXXXXXXXXXXXXXXXXXmXXXXXXX. .XXXXXXXmXXXXXXXXXXXXXXXXXXXL

.XXXXXXXXXXXXXXXXXXXXXXXXXXXXX} {XXXXXXXXXXXXXXXXXXXXXXXXXXXXX.
.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.
JXXXXXXXXXXXXXXXXXXXXXXXXXXXXXF 7XXXXXXXXXXXXXXXXXXXXXXXXXXXXXL
XX^7XXXXXXXXXXXXXXXXXXXXXXXXXF 7XXXXXXXXXXXXXXXXXXXXXXXXXF^XX
XX {XXXFXXXXXXXXXXXXXXXXXXXF’ ‘7XXXXXXXXXXXXXXXXXXX7XXX} XX
‘X}{XXX’7XXXFXXXXX^XXXXX ‘’ ‘’ XXXXX^XXXXX7XXXF‘XXX}{X ’

‘’XXX’ {XXX’XXXXX 7XXXF 7XXXF XXXXX‘XXX} ‘XXX‘’
.XX} {XXF {XXXX}‘XXX} {XXX’{XXXX} 7XX} {XX.
{XX ‘XXL ‘7XX} 7XX} {XXF {XXF’ JXX’ XX}
‘XX ‘XXL mXXF {XX XX} 7XXm JXX’ XX’

XX 7XXXF ‘XX XX’ 7XXXF XX
XX. JXXXX. 7X. .XF .XXXXL .XX

{XXL 7XF7XXX. {XX XX} .XXXF7XF JXX}
‘XXX’ ‘XXXm mXXX’ ‘XXX’

^^^^^ ^^^^^
.mJXXLm mJXXLm.

.mJXXL .JXXXXXXXXL JXXXXXXXXL. JXXLm.
mXXXXmXXXL .XXXXXXXXXXX} {XXXXXXXXXXX. JXXXmXXXXm
7XXXXXXXXX} .JXXXXXXXXXXXXX. .XXXXXXXXXXXXXL. {XXXXXXXXXF

.XXXXXX’.JXXXXXXXXXXXXXXXXL JXXXXXXXXXXXXXXXXL.‘XXXXXX.
.XXXXXXXmXXXXXXXXXXXXXXXXXXXL JXXXXXXXXXXXXXXXXXXXmXXXXXXX.
{XXXXXXXXXXXXXXXXXXXXXXXXXXXXX. .XXXXXXXXXXXXXXXXXXXXXXXXXXXXX}

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. .XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7XXXXXXXXXXXXXXXXXXXXXXXXXXXXXL JXXXXXXXXXXXXXXXXXXXXXXXXXXXXXF

7XXXXXXXXXXXXXXXXXXXXXXXXXF^XX XX^7XXXXXXXXXXXXXXXXXXXXXXXXXF
‘7XXXXXXXXXXXXXXXXXXX7XXX} XX XX {XXXFXXXXXXXXXXXXXXXXXXXF’

‘’ XXXXX^XXXXX7XXXF‘XXX}{X’ ‘X}{XXX’7XXXFXXXXX^XXXXX ‘ ’
7XXXF XXXXX‘XXX} ‘XXX‘’ ‘’XXX’ {XXX’XXXXX 7XXXF
{XXX’{XXXX} 7XX} {XX. .XX} {XXF {XXXX}‘XXX}
{XXF {XXF’ JXX’ XX} {XX ‘XXL ‘7XX} 7XX}

XX} 7XXm JXX’ XX’ ‘XX ‘XXL mXXF {XX
XX’ 7XXXF XX XX 7XXXF ‘XX

.XF .XXXXL .XX XX. JXXXX. 7X.
XX} .XXXF7XF JXX} {XXL 7XF7XXX. {XX

mXXX’ ‘XXX’ ‘XXX’ ‘XXXm
^^^^^ ^^^^^

The use of a camel image in association with Perl is a trademar k of O’Reilly &
Associates, Inc. Used with permission.

Thecamel code that makes up the cover art was written by Stephen B. Jenkins (aka Erudil). When
executed, it generates the images of four smaller camels as shown above. A discussion of the camel
code in its native habitat can be found on PerlMonks
(http://www.perlmonks.org/index.pl?node=camel+code). More information about Stephen B.
Jenkins and his work can be found on his website (http://www.Erudil.com).

Perl Training Australia (http://perltraining.com.au/) 181

182 Perl Training Australia (http://perltraining.com.au/)

