Programming Per

#!/usr/bin/perl —~w

use strict;
='ev
al(" seek\O4OD
ATA0, 0;");foreach(1..2)
{<DATA>;}my @camellhump;my$camel;
my$Camel ;while(

<DATA>){$_=sprintf("%-6
9s".$_);my@dromedary 1=split(//);if(defined($
_=<DATA>)){@camellhum p=split(//);}while(@dromeda
ryl){my$camellhump=0 ;my$CAMEL=3;if(defined($_=shif
t(@dromedaryl))&&/\S/){$camellhump+=1<<$CAMEL;}
$CAMEL-—;if(d efined($_=shift(@dromedary1))&&/\S/)}{
$camellhump+=1 <<$CAMEL;}$CAMEL--;if(defined($_=shift(
@camellhump))&&N\S/){$camellhump+=1<<$CAMEL;}$CAMEL-—;if(
defined($_=shift(@camellhump))&&N\S/){$camellhump+=1<<$CAME
L;;}$came|.:(split(//,"\040..m‘{/J\047\134}L"7FX“))[$cameI1h
ump];}$camel.="\n";}@camellhump=split(/\n/,$camel);foreach(@
camellhump){chomp;$Camel=$_;tr/LIF7\173\175047/\061\062\063
45678/; tr/12345678/JL7F\l75\l73\047/$ =reverse;print"$_\040
$Camel\n";}foreach(@camellhump){chomp;$Camel=$_;y/LIF7\173\17
5047/12345678/;tr/12345678/IL7F\175\173\047"/;$_=reverse;p
rint"\040%$_. $Cameln” }#]aph Erudil’;;s;\s*;;g;;eval; eval
("seek\O4ODATA 0,0;");undef$/;$_=<DATA>;s$\s*$$g;();;s
A5 map{eval” prlnt\$ \"}.{4}g; _ DATA__ \124
\1 50\145\040\165\163\145\040\157\1 46\040\1 41\0

40\143\141 \155\145\1 54\040\1 51\155\ 141
\147\145\0 40\151\156 \040\141

\163\16 3\
157\143\ 151\141\16 4\151\1 57\156
\040\167 \151\164\1 50\040\ 120\1
45\162\ 154\040\15 1\163\ 040\14
1\040\1 64\162\1

41\144 \145\
155\14 1\162\ 153\04 0\157

\146\ 040\11 7\047\

122\1

45\15 1\154\1 54\171 \040

\046\ 012\101\16 3\16

3\15 7\143\15 1\14

1\16 4\145\163 \054

\040 \111\156\14 3\056
\040\ 125\163\145\14 4\040\
167\1 51\164\1 50\0 40\160\
145\162 \155\151
\163\163 \151\1
57\156\056

Kirrily Robert

Paul Fenwick
Jacinta Richardson

Programming Perl
by Kirrily Robert, Paul Fenwick, and Jacinta Richardson

Copyright © 1999-2000 Netizen Pty Ltd

Copyright © 2000 Kirrily Robert

Copyright © 2001 Obsidian Consulting Group Pty Ltd

Copyright © 2001-2008 Paul Fenwick (pjf@perltraining.cam)
Copyright © 2001-2008 Jacinta Richardson (jarich@péning.com.au)
Copyright © 2001-2008 Perl Training Australia

Open Publications License 1.0

Cover artwork Copyright (c) 2000 by Stephen B. Jenkins. Wsigld permission.

The use of a camel image with the topic of Perl is a tradema@®’'Beilly & Associates, Inc. Used with permission.

This material may be distributed only subject to the terns@nditions set forth in the Open Publication License, \t.lter (the latest
version is presently available at http://www.opencontegtopenpuby/).

Distribution of this work or derivative of this work in anyasidard (paper) book form is prohibited unless prior perriuads obtained from
the copyright holder.

This document is a revised and edited copy of the IntrodndtidPerl and Intermediate Perl training notes originallyated by Kirrily
Robert and Netizen Pty Ltd. These revisions were made byfFRawick and Jacinta Richardson.

Copies of the original training manuals can be found at #smurceforge.net/projects/spork

This training manual is maintained by Perl Training Aus&aand can be found at http://www.perltraining.com.atéadtml

This is version 1.18 of Perl Training Australia’s "ProgrammPerl" training manual.

Table of Contents

1. About Perl Training AUSLIALIAeeeiiiiiiiie et e e e 1.
1= V11T PSSR 1.
L] 1S U1 1 1] o SRS 1
100] o] r= Tox QT L= SO PPRP PP PPPPP 1

P2 1 1o T [Tox 1T o U 3
L0 1Yo 11 £ PPPPTPPPPPPPPS 3.
(L0 U1 £T= T 0T 1 10T 3

D - | PP TRPTTRPRTTPRRRN 3
D T2 | PP TR PRPRPRTRPRRRN 3
D= | PP TTPTPRPRTTPRRRN 3
D T2 | PP TR PTTRPRTRPRRRN 3
ASSUMEA KNOWIBUQE. ...ttt ettt e e e e e e et e e e e e e e s emmnnne e e s 4
Platform and version detalls................oooiiiiiiiiiiiiiiieeee et 4.
ThE COUISE NOLES......ccco et reeeenn e
OthEr MALEIIAIS.......oiiiieeieeeiiie ettt e eeeee e eeeeeeeeeeaesssesssessstsbssetasssssssnmnnneseseessnssnnns 5

BoWHhALIS PeIl....iii e s 1.
T TR ol s F= T o (= SO TSR PT TR 7
[Tot=T 0 ST RTPPR 7.
Perl’s Name and NISOLY........uiiiiee i er e e e e e e enee e 7
TYPICAI USES OF PIL....oiiieee et e e e e e e s e 7

BLI=2 Tl o] o Yo =TS [o PSSR 4
System administration tasSkS........c.cooiiiiiiiiiiiee e erece e eeee e e e
CGl and Web programming............eeeceeiiecurieeeeeeeessissnieeeressnnreeereeeesssnsnnsnnrreeeeees 8..
Database INTEraCHON..........eeiiiiiiiee i snes 8
Other Internet ProgrammMing.........e.eeeeieioiirireeee e e e st e e e e e e e e e e e e e snnrrrnrrreeeaes 8..
LeSS typiCal USES Of PEIL......cci i 8..
WRAL IS PEITIIKE 2. ...ttt et e e e e e 8
The Perl PhilOSOPNY.......c.cuiiiiiiiie ettt a e e e e e srnnaneeee s 9
There’s more than one way t0 dQuit..........uvvvviieeeiii i 9.
A COITECT PeIT PrOGIaM e eieiiiiiieie e ettt e s e s s e e e e et ree e e e e e e e s ranrnerneeeen e 9..
Three Virtues Of @ PrOgIramMIMBE........ciciii e e e e e es s s e e e e e e e e e e e e e e s nnnnaneeees 9.
LAZINESS .. oot 9
10T o T2 L[] o [o = TP EURTPRI 9
HUDBFIS . e, 10
THIEE MOIE VIFEUES......cviiiieiiteieieieiiieieieiats it mssameeaeesbesssesesseessessasssssssnssnnssnnnnnnnn 10
Share and ENJOYL ... e 10
PartS Of PEIL...eeeeeeee e e 10
THe Perl INtEIPIrEteL. ettt e e e e e e e e e e enes 10
Manuals/DocumMENtation.............ooooiiiiiiiieeeee ettt 11
=T YT o V1= 11
(O gF= o (T a1 0] 4 F= USSP 11

4. A brief guide tO PEIIAOC.uiiiieee e annne e 13

L0 LS Tg o o 1=T ¢ (o [o o TR PRPUPRPPR 13

EXEICISE ..ttt naees 13
Language features and tULONIalS............vvviiiiiee e 13
(oY) (o T o I 0T T 1o 1 £ ER 13
SearChing the FAQS ...ttt e e e e e e s r e e ee e e e srmnneaeee s 14
LOOKING UP MOAUIES.......ceiiiiiiiiiie et ee s eeet e e e e e e e s st e e e e e e e s e ennnnneeeeeennnes 14

Perl Training Australia (http://perltraining.com.au/) iii

5. Creating and running @ Perl Program..........oouiiiiieiiee et eaa e 15

T TR el s F= T o) (= SO U R U UUTTP RSP 15
LOQgQiNg INTO YOUI ACCOUNL........uutiiiiiiiee ettt e e e e e et ee e e ee sttt e e e e e e e s e enbeebeeeaeeeenannne 15
OUF fIrSt PeIT PrOQIAMeeeiiiiiiieii et e et e e e et ee e e e e e e e s e sannneae s 15
Running a Perl program from the command line.............cccccooiiiiiiiiiiiii 15
EXECULING COUR.....ce ittt e e ettt e e e e e e e e st e e e e e e nbnnbeeeeaaens 16
The "shebang" i€ fOr UNiX.........cuuuiiiiiiii et 16

The "shebang" line for NON-UNIXES............uuiiiiiiiiiiiii et 17
Command line optioNS @Nd WaININGSccceaiiiiiiiiiiiiieee et ee e e e ee e e e e neneeeee s 17
ISy (o= LT T 11 To < ST RUR R TURPPRPTRRN 17

1070 010 0T= o 1K T TR TR 18
BIOCK COMIMENTS ...ttt ettt e e e et e e e e e e s e enbee e eaaeeees 18
BN D bbb 18
ChaPLEr SUMIMAIY. ... ittt ettt e e ekt e e e et b be e e e sntbe e e e s rneeeentbeeeeens 18
6. Perl VArIADIESo 21
TR a3 g F= T o L= PSPPI 21
WhaL IS @ VANADIE2........oo i et e e 21
Variable NAMES......ciiiii e e e e 21
Variable scoping and the StriCt Pragma..........c.uuevereeeee i e 21
Arguments in favour Of StHCINESS........cc.uviiiiiiii e 22
Arguments against StHCINESS. ...uuuuiiie e e e e e e e e aeee s 22
Using the strict pragma (predeclaring variables)...........cccccccveve e, 22
EXBICISE. . et ittt ettt ernee e 23

Using the diagnoStiCS Pragmal.........ceeeieiuriieirieeeeiissiieesereseseeaeeeeee e e e snesrnnaeeeeees 23
EXBICISE. . ettt ettt ettt ernae e 23

Starting Your Perl Progra..........oooouuiiiiiieaeee it ee e e e 23

S Yor: 1= T TR PPTPPPRT 24
Double and SiNGIE QUOTES........cuii it e e e 25
=] (o1 TP PUUP R PPPRTTTN 25
Special CharaClerS.ooi i 25
Advanced variable iINterpolation.............cooiiiii e 26
=] (o1 1S PP U PRI SPT 26
ATTAYS. . 27
INILIANISING AN AITAY. ... ittt e e e eeee e e e e snas 27
Reading and changing array ValUES............cuuuiiiiiiiaeeiiiiiiieee e 27
ATTAY SIICES ettt ettt e e e e e e e e e e e s sannne e e e e aa 28
Array INTErPOIALION.t e e e e 28
CoUNtING DACKWAITS.eeeiiieeeeee ittt e e e e e e 28
Finding out the Size Of @N AarTay..........cooiiiiiiiiiiii e 29
UsiNg qW// t0 POPUIALE @ITAYS......cevveeeeeiiciiiieieiee e e s e st ee e e esr e e e e e e e e e nrnaaneeee s 29
Printing out the valuesS in @n @rray..........ccccoeiiiuiiiee it 30

A QUICK [00K @t CONEEXL......eeiiiiiiiee it 30.
What's the difference between a listand an array?..........cccccevvveeiniien e 31
T (o] [~ PSPPSRI 31
ADVANCEA EXEITISES ..ot iivieiei it e sttt ettt e ettt e e st e e sttt ee e s sbbeeeeesnbeeeeanns 32

[P2] =TSR PPPPPPRPPRR 32
INIGIAlISING @ NASKL.....oiiii e 32
Reading hash VAlUES............oooiiiiiii e 33
Adding New hash ElEMENES.......cciviiiiiie e 33
Changing hash VAIUES.............ooiiiiiiii e 33
Deleting hash VAIUES...........ooiiiiii e 33

Perl Training Australia (http://perltraining.com.au/)

Finding outthe size of ahashi.........oooiiiii e 33

Other things about hashes.............ueiiiii e 34
=] (o1 1S PP U PRI SPT 34
SPECIAI VANADIES ...ttt nnnne e 35
The special variable $.........ccooiiiii s 35,
@ARGY - 8 SPECIAL AITAY .. ueeeeeeeeeii ittt e e e et e e e e e e nabae e eeaaaeeeanas 36
YENV - @ special NaSKL......c.oooiiii e 36.
=] (o1 1] PP TP TSP 36

(O gF= o (T o100 4 F= Y USSP 36
7. 0perators and FUNCHIONS........oi it e e e e e et e e e e e e ennee s 39
T TR ol s F= T o) (= SO U P TR UURRP PO 39
What are operators and fUNCHONS2.........ooiiiiiiiiiie e 39
(O 0] = 1o] £ SRR 39
YN g1 0 1= (ol 0T o= = L (o] USSR 39

S 1 aTo o] 0 1=T = 1 (0 €SOO A0
EXEICISES . eiiieiiitiiie ettt s nneeessne e e ennnneee e A0
(@11 o] 01T = (] =SOSR ¥ |
FUNCHIONS. ..ottt ettt e e ettt e e e ettt e e e st e e s ernee e e bt eee e s anbeeeeeennend 41
TYPES Of ArQUMENLS.eiieiiiiiee i e e ettt e e e reeeee e e s s e s e e e e e e e s s snaan e e eaeeeessanns 42
RETUIN VAIUES ...ttt et et e e bt eeenee e e e 43
MOIE ADOUL CONEEXL......eiiiiiiiiee ittt et e ettt e e et ee e e et esenee e e e 43
SOME €ASY fUNCHIOMS. .. .eeeeiiee ettt e e e e e e e e e e s s e s st e e e e e e s e annneeeeeeannnes a4
StriNG MaNIPUIALION.........eiiiiiiiie e e e e e s et e e e e e e e e s enns a4
Finding the length of a String.........cccccvvveee e A4

CaSE CONVEISION. ...eeieiitiiiieeiitiiie ettt e et e e seeeessrteeeeesstnneeessnnneeeesnnneeeennnnes A4

(o] g o] o T0 I UaTo o3 s To] 1 0] o) S OUPSPRRR 45

String substitutions With SUDSEE()..........oooiiiiii e 45
EXEICISES. ...ttt ee ettt e ettt e e e e e srnebeeeae e e e e nnnnneee s O

NUMETIC FUNCLIONS.eiiiie it e e e eeaeas 46

TYPE CONMVEISIONS. ...ttt e ee e e ettt e e e e e e meee e e e e e s bbb e et e e ae e e aaaannbbaeeeeeeee s smnnneas 46
Manipulating liStS and @rraysS...........eceeeeeeiiiiiiiiieee e eeieeeeee s seviieeeeee e eeeeee A0
StACKS QN QUEBUES.......co oottt e e e et e e e e e e e e e 47

Ordering lISES. ...ttt et a e e e enne a7
Converting lists to strings, and ViCe VErsa...........cccoovvvveeeeeeeenesiccciiieeeeenn 48

EXBICISES . ettt ee ettt e e e e e e e e e snneeee e snnnnenen A8
HASH PrOCESSING ettt e e e e e e s sannneae e A9
Reading and Writing filleS............uuiiiiii e 49

LI LT PR PPPPRR R ORPPRPP 49
EXEICISES . ettt e ettt e e et e e ne e e e e e e e snneeeees e snnnnenee A0

(O gF= 1o (T o101 0] 4 F= USSP 50
8. CONAItIONAI CONSIIUCTS.....ceiiiiiiiie ettt ettt e et et e e e sttt e e s bt e e e anbb e e sennee e e 51
T TRl F= T (= P 51
What is a conditional StatemMeNnt2.........cccuiiiiiiiiiie e 51
WAL IS TrUIN .. e et srnn et e e eneees 51
The if conditioNal CONSIIUCT........ocoiiiiiiii e 51
SO WHALIS BLOCK? ...ttt ettt et e et e e e e nes 52
Yo 0] o1 S 53

(070] 12 o F= 1g TSI a1 0] 01T = L (o] ¢3RS ORS 54
T (o ST T PRSPPI 55
Existence and definitiVENESS..........euiiiiiiiiie et 55
T (o1 = PSRRI 56

Perl Training Australia (http://perltraining.com.au/) %

B0O0I€AN 10QIC OPEIALOLS.....cciiiei ittt ettt e ettt e e e e e e e bbb e e e e e e e s e nnneeeaeeaaas 57

Logic operators and Short CIrCUITING.cciiaiiiiiiiiiii e 57
B0O0IAN @SSIGNMEIL.......oiiiiiiiiitiiii ittt e et e et e e e e e s bbb e e e e e e e e s e snnnneeeeeaennnnes 58
LoOp coONditioNal CONSITUCTScoi ittt 59.
WHIIE OIS . .ttt ettt e e e e e e s et e e e e nnnb e e eas 59

fOr @nd FOr@ACK.......co i 59
EXBICISES. .ttt e ettt e e e e e ettt e e e e e e e e e s nnrnneees e e snnnnened 60
Practical uses afihile loops: taking input from STDINL.......cccooiiiiiiiiiiii e 61
EXBICISES ..ttt ettt ettt e e e e et e e e e e e e e s nnrnneees e e ennnnened 62

N E= T =To o] (o Lol (= TP PR PUPUPPPPRN 62
Breaking out or restarting l0OPSuuiiiiiiiie e 62
PraCliCal EXEICISE ... oottt e e e e et e e e e eeennreaaaee e 63
(O g T o (T o101 0] 4 F= USSP 64
9. SUBIOULINES ...ttt e et e e s e e neseeeeennreeeennnneeed 65
T TRl =T) (= SO 65
INtrodUCING SUBIOULINES.eiiie e r e e e e e e e e e e e s rnneeees 65
What iS @ SUDFOULINE?........veiieeiiii e 65

WhY USE SUDIOULINES?.....eiieiee e ittt te e e e e seec e e e e e e e s st aee e e e e e s ennnnes 65
UsiNg SUBrOUtINES IN PEIL........oiiiiieee et 65

L0 1T aTo =TT 0 o] o 10] =T 66
Passing arguments to a SUDIOULINE.........occeeiiiiiiiiiiiiec e 67
PasSSING IN SCAIAIS........cc i a e e e e e s ee e eee e 67
Passing in arrays and hashes.............ueviieeiiiiiiiieee e 67
Returning values from a SUBIOULINE............uuviiiiee i 69
T (o ST PR PUPRRY 69
L1 g T o1 a1 [g o 4= Y/ 70
10. REGUIAT EXPIESSIONS ... tetiiiiieee ettt ee e e e e e e ettt e e e aa st b ebeeeeeaaeasaaasanbeseeeaaaeesaannnnnaneeaeaanes 71
T TR ol s F= T o) (= SO U UTT T URUUTTP RO 71
What are regular @XPreSSIONS?........u i it e e e ete e e e e et e e e e e e e s aebe e eeeaaaeaas 71
Regular expression operators and fUNCLONS. ...t 71
M/PATTERNY/ - the match Operatar............coooiiiiiiiiiiie e 71
S/IPATTERN/REPLACEMENT/ - the substitution operatar...........cccccooeviiiineennn. 72
EXBICISES. ..ttt ettt ettt e e e e e et a e e e e ennnnaa e 72

BiNdiNG OPEIALOrS.eieeiiiieie ettt e ettt e e e e et e e e e e e e e s enneeas 73
BASY MOAIfIEIS. ...ttt e e e e e e e e eee e aae 73
(] 7= o] F= = T =] PR PURPUPPRTR 73
Some easy Meta CharaClersS.........ooouiiiiiii e 13

(O 10T T a7 1T £ U 75
] (o] [T TP UPPTORPRRP 75

LT L0101 o1 T[N (=] o] 0] (o [1= SO 76
CRArACTEr ClASSES....cii ittt et e s 76
EXBICISES. .. ettt ettt 77

F 1124 g = 11T] o PP PUPPRP 77

The conCept Of AtOMS......uvviiiiiie e D
T (o ST SRR PUPRR 78
L1 g T o1 (= a1 [g 1 4= Y/ 79

Perl Training Australia (http://perltraining.com.au/)

11. References and complex data StrUCIUIESuiiiii it 81

T TR ol s F= T o) (= SO P U ST URUURTP RPN 81
ASSUMEA KNOWIBAQE. ...ttt ettt e ettt e e e e e e e e meeeee s 81
INtrodUCtioN tO FEfEIENCES et 81
USES fOF FEIEIENCES. ...ttt e e e erne e e e 81
Creating compleX data SLIUCIUIES.cooiiiiiiiiiiiiiiii et 81
Passing arrays and hashes to subroutines and functions...............ccccccceeiiiiinnns 81
ODbjJeCt OMENLEA PEIL....cc et 82
Creating and dereferencing referenCes........ ..ottt 82
=] (o1 1] PP TP PRSP 83
AsSIgNING through referENCES.....coo i 83
Passing multiple arrays/hashes as arguments. ... 84
ANONYMOUS JAtA STTUCTUMEScei ettt ettt e e e e e e snneaeeeeas 85
EXBICISE ..ttt et e e et naaes 86
COoMPIEX AALA SITUCTUIES ...eveiiieei it e et e e e et e e e e e e s e s s r e e e e e e e s nnnnaeeanan 86
T (o 1T RO PPRPUPRRY 87
Disambiguation and curly Braces...........coovviiiiiei e 817
DT = I 11 0 0T 88
T (o] [~ PSPPSRI 920

L1 gT= 01 (= a1 [g o 4= Y/ 90
12. External Files and PacCkages.cuuviiiiiiiiiiiiie et 91
T {1 ES ol =T) (= SR 91
Splitting code betWeEN fil@S......ceiie i 9l
=0 U S PEE 91

USE StHCt AaNd WAININGS. .. .evveeieeeee et e e e e s st eessesster e e aeeessnnnrarareeaeeeennannes 92
EXAMPIE... e nne e e 92

o T (o111 TSP TTOUPPUPPPRPRR 93
INtrOdUCLION t0 PACKAGES. ... eueeeiieeie ettt ettt e e e e et e e e e e e e e e annnnes 93
The SCOPING OPEIALAL.ceiiieieiiiiiiiiie et e ettt e et e e e e e s e bbb e e ee e e e s s e snnnbeseeeeannnnes 94
Package variableS @and QUE..............uuiiiiiiieii et a5
o T (ol LS T S EPOUUUTTTPOTUUPPUPPPPPRR 95
(O gF= o (T a1 0] 4 F= Y/ USSP 96
L3 IMOAUIBS ...ttt e e e oottt e e e e e e e e e e eeee e e e e absbbereeeaaeeaeannn 97
T TR el s F= T o) (= SO U TUT R URUUTRPRRRPRIN 97
MOAUIB USES. ...ttt ettt e e e e e e sttt e e e e e e e et e e e e ae s nnnbbeeeeaeaas 97
WHhat IS @ MOAUIB?.......c ettt eeeeeeeaaens 97
The dOUDIE-COIOM.....ccoii e e 98
T (o1 = PR PR 98
Where does Perl [00K for Modules?...........cooiiiiiii e 98
Finding installed MOAUIES ... e eee e e 99
EXBICISE ..ttt e e et 99
USING CPAN MOAUIES......oeiiiiiieii i e e e e e e e e e s s ee e e e e e s eennes 99.
WIHtING MOAUIES.....cciiei et e e e e e e e e s e s e eeeenenneenaeees 100
USE VEISUS FEOUITE. ...evveeeeeiesiteiiieeeeeeeessssnaeteeeseesasessareeaeeeeesassssstneeeeeeesssansnseeneeeen 101
Warnings and StHCE..........uuveireiiee e e 102
EXBICISE ..ottt e e et nees 102
THINGS 10 FEMEMDE et e e ere e 102

Exporting and importing SUBIFOULINES.ccciiiiiiiie e v 102
(@IS NPT 103

USE DASE .. eeiei ittt ettt eenae e 103

F Y Q== 2] o] =SS 103

Perl Training Australia (http://perltraining.com.au/) Vi

EXporting by defaull...... ..o 104

AN EXAMPIE. ... e e e s 104
IMPOrtiNG SYMDOIS....cciiiiiiii e 105
=] (o1 1] TR PPT R 105

o d oo T4 11T [N =T - RO PPPRRR PRI 105
Importing symbols through tags..........ceeeeiiiii e 105
=] (o1 L U PPPPTTRR 106

(O aF= T o1 (T a1 0T 0 4 F= /T TSUPPTTP 106
14, USING PeIl ODJECIS ... ittt e e e e e e e e e e e e e nenes 107
T g TESi el s T=T o) (= SO PRSP URUUPTP 107
ODJECES IN DIIET....ceeeeeeee et e e e e e e e e e 107
USING @N ODJECL. ..ot ee e e e 107
Instantiating an OBJECT........oviiiiii e 108
Calling methods 0N an ObJECL.........cvviiii i 108
(DTS 100} V710 o JF=Ta o] o] 1= Ton A0SR 108

(O g T 011 g1 [g o 4= Y/ 109
15. Advanced regular EXPrESSIONS.uuuuuuiieeereiieirreiteeteeeisssetieeeeesssssraerreeeaesessnnrnrnrreeeeeeas 111
T TR od s F= T) (= S 111
ASSUMEA KNOWIBAQGE.eeieeeie ettt eeee e r e e e e e e s et er e e e e e e e e s emnneeee s 111
Capturing matched Strings t0 SCAlALS.........ccoviiiiiiiiieei e e 111
Extended regular EXPreSSIONS.cceiiiiurriieiieeee e e siieeeeeeeesestenttrereeeeessssrnnresereeeeeseannnns 112
EXBICISE ..ottt ettt e nees 113
ADVANCEA EXEITISE ...t e ittt e et e et e e st e e e sbb e e e e anbbeeeeennes 113

LT TCTo] o= TP PR 114
=] oL TP URPPPRTRR 114
MOrE MEta CRAIACTIEIS.uiiiiie ettt e e e e e eee s 114
Working with multi-liNe StriNGS...........uiiiiiie e 115
=] oL TSP PPPPPPRTRR 117
Regexp modifiers for multi-line data............ccco i 117

BaACK FEfEIENCES.ttt e e e e rmnneee e e enes 119
Special VariabIes...........uueiiiii e 119
=] (o1 1= SRR SRR 120
AQVANCEA BXEICISESeeiieeieeiiiitieie e ettt e e e e ee e e e e e e e e e b et br e e e e e e e s e nnnaeees 120

(O gF= T o1 (T a1 0T 0 4 F= YU SPPTRP 120
T 1 L= 1 PR 123
T g TESi el s T=T o) (= SO PR SUSUUPRPRTP 123
F N a0 | L= o = Tt q= SO PPR 123
LT TR L] o101 0] o =] = Lo PR 123
] (ol [T PP 123
Opening a file for reading, writing or aPPENAING.........ccccvvviiirieeee e 123
(@] o=T 1 aTe 0] g £=T= Lo 1o S SRR 124
FAIIUIE. . et 124

Opening for writing and appending.........cuueeeeeeiiiiiiiiiiieeee e 125
FUNNY fiI@NAMES. ... it e e e e e e e e s ennes 125
FIlENANAIES........eeiiiiie et e e et e et e e e 126
Scalar filehaNAIEScuviii e 126
] (ol [PP 127
Changing file CONLENTS.......coviiii o e e e e e nreeeees 128
Secure temMPOrary fil@S........uuii i 128
Looping OVEr file CONENES.......cciii e e e e e 129

viii Perl Training Australia (http://perltraining.com.au/)

] (0 1Y T 129

Opening files for simultaneous read/Write.............coueeeieiiiiiiiii e 129

The SMaAll PrINL....cii e 130

2 0171=T 1 o Lo TR PSS PPR T 130

O] o =TT g o [o] o= PRSPPI 131
=] (o1 1] TP RS PPT T 132

[1 L= (0Tt (] T PP UTUR 133
Handling binary dat@.............ueeeiiiii e 134
(O gF= o1 (] g1 0T 0 4 F= YT 135
17. DiIr€CtOry INEEIACTION ..ccoiiieieee ettt ettt e et e e e e e e e e sttt e e ae e e e smnneeans 137
T TR ol s T=T o) (= SO PRSP URUUPPRTP 137
The globhING OPEIALOL.........uuiiiiiieiei ettt e e e e e emnes 137
] (ol [PP 138
Finding information about fil@S............cociiiiiiiiie e 138
YT L= 1 T (= P 139
] (ol [T PP 139
Changing the WOrking dir€CONY........c.ii i e e e e e e e e e e e 140
ReCUrsing dOWN dir€CIOMES.vvieee i i e iiiiiiiie e e e e e ere et e e e et r e e e e e e e e re e e e e e s e nnenees 140
FIlE RN RUIE. ...t 141
] (ol [T PP 142

(o] o= aTo L= Ta o I (=TT [LT 142
Scalar directory handles..........ccoo i 143
] (ol [T PP 143

(o] [o] o JF= U g To I £ Y= To (o 1SS 143
(=371 g To o [OO PRPPUPPR 144
(O g 011 g1 [g o 4= Y/ 144
18. SYSIEM INTEIACTION....ceiii ittt e e e e e e e e bbb e e e e eeaneeeeeas 145
T TR ol s T=T o) (= SO PRSP URUUPPRTP 145
531 C=10 1 PP UUUP P PUPPPPPPPPRR 145
IPC:SYSteM:IISIMPIE....co e 146

B 1)] (o= T U T TP 147

MS WINAOWS EXEICISE...cceeieeiiiititieeeie e e e ettt e e e e eeeee e e e e e e e et ebeeeeaaaaa s e annenneees 147
USING DACKLICKS. ...ttt e e e e emnneee e e e eene 147
HIIX BB CISES .t ttttetie e e e e ettt ettt e e oottt e e e e e e bbbttt e e e e e e e e e e b b e bttt e e e e e e e nereeeaaaanns 148

MS WINAOWS EXEICISES. ... eiitiiieieeeee e ettt ee e e e semnee e e e e e et e e e e e e e e e anebaneees 148
Platform dependenCy ISSUBS.........couuiieiiieie ettt 149
SECUILY CONSIAEIALIONSttt ettt e e e e e e e e e e e e e e amenes 149
=] oL TSP PPPPPPRTRR 151

ST 1= o] o PSS 152
(O g 011 g1 [g o 4= Y/ 152
19. PracCtiCal EXEICISES . .. uiiiiiiiie ettt ettt e et s et e et e e e st e e e e et bt eenennee s neeas 153
ADOUL tNESE EXEICISES ... eeiiiei ittt ettt e et e e s sttt e e s sbbe e e s sneeeeans 153
PAlINAIOMES ...ttt et nen e 153
=TT 2= o 153
P20 B @70 s [od 811 T o PO RPPRPPI 155
RTA7] 1= L= (o 1 T 1TSS 155
LT (T g ==V L1 o PR 155
270 0] PR 155

(0] 111 = ST TT ST TR 155

Perl Training Australia (http://perltraining.com.au/) iX

A, Advanced Perl VAriabIESo et e e e e e e aeeans 157

T g TESi el s T=T o) (= SO TR URUUP PR 157
QuUOLING WIthgq() @NAG() oottt e e e e e e e e e e e e e e e e e 157
EXEICISES ...ttt 158

SCalars iN aSSIGNMEILuiiieiii ettt e e e e e e e e b et e e e e e e e eennees 158
AFTaYS IN ASSIGNIMEIIL......eeiiiiiiee ettt ere e ettt e e e e e e e e b b e e e e eeeeeesamneeeeeas 159
HASN SHCES ... 160
EXEICISE ...t 161

HaShES IN @SSIGNMEILL.......eeiiiiiei it e e e e e e e e e e e e e e e nneeee s 161

(O aF= T o1 (T a1 0 0 4 F= YT TS P PTTP 162

B. Named parameter passing and default arguments..............cooiiiiiieiniiiec e 163
T g Il g F= T o) =] PRSP 163
Named Parameter PASSINIG.......couuriieaiiiiite ettt eseee e e e s et e e s e nbee e e e abbeeeeennees 163
DefaUlt ArgUMENTS.coiiiiii ettt e e et bee e e e et e eaneee e ene e 164
Subroutine declaration and ProtOtYRES........coiiiiiieiiiiiiee i 164

L@ g F=T 01 (=T ST 0] T Y PSR 165

C. ComPIeX data SIIUCTUIES.coei ittt et ee e st ee e e et ae e e e snbbeeennee 167
ATTAYS OF BITAYS ...ttt e ettt e e bb e e e snb e e e nee e e e neees 167
Creating and accessing a two-dimensional array...........cccoocveveeiiieiiniiieeceeeen. 167

Adding to your two-dimenSIioNal rfaY..........ccueveiiiiieeeeiiiieees e 167

Printing out your two-dimensional @rray.............ceeiieieeeiiiiiee e ereeee s 168

HASNES Of @ITAYS .. eeiiii ittt b e s rne e ennes 168
Creating and accessing a hash of artays.........ccccoceiiiiie e 168

Adding to your hash Of arrays. ...t 168

Printing out your hash of arrays...........c..ueeiiiii e 169

ATaYS OF NASNES.....coi it 169
Creating and accessing an array of hashes.........ccooiiiiee 169

Adding to your array of haShes..........oouuiiiiiiiii e 169

Printing out your array of haShes............cooiiiiiiiii e 170

HASheS OF NASHES.........eiiii e 170
Creating and accessing a hash of hashes..........cccoooi 170

Adding to your hash of hashes...........oooi e, 171

Printing out your hash of hashes...........o e 171

MOre COMPIEX SITUCTUIES. ... et ee ettt ettt ettt e e e e e e e e e e eeeeeeaan 171

D. MOTE fUNCHIONS ...ttt ettt s et e e e e en e s s 173
The grep() FUNCHON........c.eeie et et e eee e 173
] (ol [T PP 173

The Map() fFUNCHON. ...t 173
] (ol [T PP 174

E. UNIX ChEat SNEEL.......ci it ernee e ee e e enes 175
F. EdItOr Cheat SNEEL...........c.oooii e 177
AL (o] Y1 1 1) I PSPPI 177
RUNNING. .ottt ettt e sttt e e srne e e et aeee e e nees 177

L] oo PRSPPI 177

]] o PSPPSR 177

(€] (o o T TP PP PP 177

[1= o PP UPUUPPRTRRN 178

NANO (PICO CIONE). ..ttt e e e e e e et e e e e eeaneeeee s 178
RUNNING. c. ettt e e e et e e e e semnnee e e e e e e enna 178

L0 o Lo PP U P RUTRTT 178

Perl Training Australia (http://perltraining.com.au/)

GOtChAS. ... 178
[1= o PP UPUPPPRTRPN 178
G. ASCII Pronunciation GUIAEccoeeeiiiiieii e, 179
(070] (o] o] T o P UURTR R TTPPT 181

Perl Training Australia (http://perltraining.com.au/) Xi

Xii Perl Training Australia (http://perltraining.com.au/)

List of Tables

1-1. Perl Training Australia’s contact detallS............ccevvvieeiiiiiiiice e 1.
4-1. Getting around iN PEIIAOC.eee i ittt e e e e reeet e e e e e e s st areeeeeeeesesnnnreeeeeanas 13
6-1. Variable PUNCIUALIAN.uiiiiiieei e reeree e s e e e e e e e e e e e e e e e enmnnaeeeeas 21
R A 4111 oY (ol 0] 01T = o PSSR 39
7-2. StrNG OPEIALOIS....ciiveiie et e citiie e e etiee e stie e e s e e e steeee e s srbneeessnbeeesssnnneeessnnnessssneeessnnnnes B0
7-3. CoNtext-SENSItIVE FUNCLIOMS.ooiiiiiie i 43
8-1. Numerical COMPAriSON OPEIALOLS.cceiiivrrreeereeeeeesiititreereeeeeeerrareeeeeeessansnrnnereeeeesesannnnes 54
8-2. StriNg COMPArISON OPEIALOLS ... uuevereeeeesiiieiiieereeteeesssstreeeeessassnresrerreeeeessanssrenrrereeeeanaans 54
8-3. BOOIEAN |0QIC OPEIALOKS ...ttt e e e ettt e e ettt e e e e e e e st b e e ee e e e e e annnees 57
O I = o Lo [T o o] 01T =N (o] = PRSPPI 73
10-2. REGEXP MOAIfIBIS.eteiiiiiieei ettt et et e e e ettt e e e e e e s e srnnneae e e e annnnes 73
10-3. Regular expression Meta CharaClerS..........oiouieeiiiiiie et 74
10-4. Regular expression qUANTITIEESoooi it 75
15-1. MOre mMeta CRAraCleEScoo ettt e e e e e s eennbe e eeeaanns 115
15-2. Effects of single and multi-lin@ OPLioNS..........coooiiiiiiiiiii e 118
I I | o (=S o] o1=] = 1o £ J U OUPTTT 138
17-2. Differences between glob and readdir...............ccuuiiiiiiiiiiiiii e 143
E-1. SImple UNiX COMMEANGS.coiiiiiiiiiiiiee et e e et e e e e e e e e e s sennbeeeeaaas 175
F-1. Layout of editor cheat SNEetS..........uuiiiiiiiii e 177
G-1. ASCII Pronunciation GUIOE.coii ittt ettt ee e e 179

Perl Training Australia (http://perltraining.com.au/) Xiii

Xiv Perl Training Australia (http://perltraining.com.au/)

Chapter 1. About Perl Training Australia

Training

Perl Training Australia (http://www.perltraining.comeoffers quality training in all aspects of the
Perl programming language. We operate throughout Auataaldl the Asia-Pacific region. Our
trainers are active Perl developers who take a personaésite Perl’s growth and improvement.
Our trainers can regularly be found frequenting online camities such as Perl Monks
(http://www.perlmonks.org/) and answering questions amyiding feedback for Perl users of all
experience levels.

Our primary trainer, Paul Fenwick, is a leading Perl expeAustralia and believes in making Perl a
fun language to learn and use. Paul Fenwick has been workthd?erl for over 10 years, and is an
active developer who has written articles fdre Perl Journahnd other publications.

Doctor Damian Conway, who provides many of our advancedsas,is one of the three core Perl 6
language designers, and is one of the leading Perl expertdwide. Damian was the winner of the
1998, 1999, and 2000 Larry Wall Awards for Best PracticalitytiHe is a member of the technical
committee for OSCON, a columnist for The Perl Journal, arti@wof the book "Object Oriented
Perl".

Consulting

In addition to our training courses, Perl Training Austaiso offers a variety of consulting
services. We cover all stages of the software developnfertyicle, from requirements analysis to
testing and maintenance.

Our expert consultants are both flexible and reliable, aadweaailable to help meet your needs,
however large or small. Our expertise ranges beyond thatsbHerl, and includes Unix system
administration, security auditing, database design, &cdurse software development.

Contact us

If you have any project development needs or wish to learrséoRerl to take advantage of its quick
development time, fast performance and amazing vergatilitn't hesitate to contact us.

Table 1-1. Perl Training Australia’s contact details

Phone: 03 9354 6001

Fax: 03 9354 2681

Email: contact@perltraining.com.au
Webpage: http://www.perltraining.com.au/
Address: 104 Elizabeth Street, Coburg VIC, 3058

Perl Training Australia (http://perltraining.com.au/) 1

Chapter 1. About Perl Training Australia

2 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. Introduction

Welcome to Perl Training AustraliaBrogramming Pertraining course. This is a four-day module
in which you will learn how to program the Perl programmingdaage.

Credits

This course is based upon the Introduction to Perl and Irediate Perl training modules written by
Kirrily Robert of Netizen Pty Ltd.

Course outline

Day 1

+ What is Perl?

- Introduction to perldoc

« Creating and running a Perl program
- Variable types

- Operators and Functions

Day 2

. Conditional constructs
- Subroutines

- Regular expressions

Day 3
- References and complex data structures
- Introduction to modules and packages

- Writing packages and modules

« Using Perl objects

Day 4

- Advanced regular expressions

Perl Training Australia (http://perltraining.com.au/) 3

Chapter 2. Introduction

- File l/O
- System interaction

. Bonus material

Assumed knowledge

This training module assumes the following prior knowledgd skills:

« You have programmed in least one other language and you:
- Understand the concept of variables, including arrays anmutgrs/references
- Understand conditional and looping constructs

- Understand the use of user defined functions

Platform and version details

Perl is a cross-platform computer language which runs sstakly on approximately 30 different
operating systems. However, as each operating systenfasattif this does occasionally impact on
the code you write. Most of what you will learn will work eqlialvell on all operating systems;
your instructor will inform you throughout the course of amgas which differ.

At the time of writing, the most recent stable release of Re5l10.0, however older versions of Perl
(particularly 5.6.1 and 5.005) are still common. Your instor will inform you of any features
which may not exist in earlier versions.

The course notes

These course notes contain material which will guide yoaugh the topics listed above, as well as
appendices containing other useful information.

The following typographical conventions are used in theges
System commands appearthis typeface
Literal text which you should type in to the command line oit@dappears asionospaced font

Keystrokes which you should type appear like tlEBTER. Combinations of keys appear like this:
CTRL-D

Program listings and other literal listings of what appears on the
screen appear in a monospaced font like this.

Parts of commands or other literal text which should be @y your own specific values appear
like this

Notes and tips appear offset from the text like this.

4 Perl Training Australia (http://perltraining.com.au/)

Chapter 2. Introduction

@Notes which are marked "Advanced" are for those who are racing ahead or who already have
some knowledge of the topic at hand. The information contained in these notes is not essential
to your understanding of the topic, but may be of interest to those who want to extend their
knowledge.

Notes marked with "Readme" are pointers to more information which can be found in your

textbook or in online documentation such as manual pages or websites.
C Notes marked "Caution" contain details of unexpected behaviour or traps for the unwary.

Other materials

In addition to these notes, it is highly recommend that yotaioba copy of Programming Perl (2nd
or 3rd edition) by Larry Wall, et al., more commonly refertecas "the Camel book". While these
notes have been developed to be useful in their own rightCmel book covers an extensive range
of topics not covered in this course, and discusses the ptscevered in these notes in much more
detail. The Camel Book is considered to be the definitiverezfee book for the Perl programming
language.

The page references in these notes refer t@tteditionof the Camel book, unless otherwise
stated. References to the 2nd edition will be shown in pheses.

Perl Training Australia (http://perltraining.com.au/) 5

Chapter 2. Introduction

6 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. What is Perl

In this chapter...

This section describes Perl and its uses. You will learn attnsihistory of Perl, the main areas in
which it is commonly used, and a little about the Perl comryuaind philosophy.

License

Perl is distributed under two licenses. These are the Ariistense and the GPL. You may choose
which license you are using Perl under. For the text of thesas$es reagderldoc perlartistic and
perldoc perlgpl.

Many of the modules that you can download from CPAN for Pezladso distributed under these
same two licenses.

Perl’'s name and history

Perl was originally written by Larry Wall as a tool to assigntwith a re-write of the then popular
"rn" news-reader. Larry found himself desiring a languagéctv tied together the best features of
diverse languages such as C, shell, awk and sed, and wrdte Rithis need. Perl was a huge
success with system administrators, and so developmemé dhmguage flourished. Due to Perl’s
popularity, Larry never finished the rewrite of rn.

Perl allegedly stands for "Practical Extraction and Rdépgrtanguage", although some people
swear it stands for "Pathologically Eclectic Rubbish Listén fact, Perl is not an acronym; it's a
shortened version of the program'’s original name, "PeAdtording to Larry Wall, the name was
shortened because all other good Unix commands were faerdédng, so shortening Perl’s name
would make it more popular.

When we talk about the language it's spelled with a capitali®l lowercase "erl", not all capitals
as is sometimes seen (especially in job advertisementsgbgtcontract agencies). When you're
talking about the Perl interpreter, it's spelled in all loveaseperl.

Perl has been described as everything from "line noise'h® Swiss-army chain-saw of
programming languages". The latter of these nicknamesgiome idea of how programmers see
Perl - as a very powerful tool that does just about everything

Typical uses of Perl

Text processing

Perl’s original main use was text processing. It is excegglipowerful in this regard, and can be
used to manipulate textual data, reports, email, newdestilog files, or just about any kind of text,
with great ease.

Perl Training Australia (http://perltraining.com.au/) 7

Chapter 3. What is Perl

System administration tasks

System administration is made easy with Perl. It's paréidyluseful for tying together lots of
smaller scripts, working with file systems, networking, aodn.

CGlI and web programming

Since HTML is just text with built-in formatting, Perl can lbsed to process and generate HTML.
For many years Perl was the de facto language for web develofpand is still very heavily used
today. There are many freely available tools and scriptssesawith web development in Perl.

Database interaction

Perl's DBl module makes interacting with all kinds of datsés--- from Oracle down to
comma-separated variable files --- easy and portable. f@dieasingly being used to write large
database applications, especially those which provideabdae backend to a website.

Other Internet programming

Perl modules are available for just about every kind of iné&programming, from Mail and News
clients, interfaces to IRC and ICQ, right down to lower lesetket programming.

Less typical uses of Perl

Perl is used in some unusual places as well. The Human Genajeefelies on Perl for DNA
sequencing, NASA use Perl for satellite control, PDL (PeatddLanguage, pronounced "piddle")
makes number-crunching easy, and there is even a Perl Ghjetbnment (POE) which is used for
event-driven state machines.

What is Perl like?

The following (somewhat paraphrased) article, entitlech@Ms Perl", comes from The Perl Journal
(http:/lwww.tpj.com/) (Used with permission.)

Perl is a general purpose programming languatgseloped in 1987 by Larry Wall. It has become the
language of choice for WWW development, text processintgriet services, mail filtering, graphical
programming, and every other task requiring portable asdyedeveloped solutions.

Perl is interpreted This means that as soon as you write your program, you cari futhere’s no
mandatory compilation phase. The same Perl program canrumix, Windows, NT, MacOS, DOS,
0S/2, VMS and the Amiga.

Perl is collaborative The CPAN software archive contains free utilities writtgnthe Perl community, so
you save time.

Perl is free.Unlike most other languages, Perl is not proprietary. Thecs®code and compiler are free,
and will always be free.

Perl is fast.The Perl interpreter is written in C, and more than a decadptiisations have resulted in a
fast executable.

8 Perl Training Australia (http://perltraining.com.au/)

Chapter 3. What is Perl

Perl is completeThe best support for regular expressions in any languatgnial support for hash tables,
a built-in debugger, facilities for report generation,wmetking functions, utilities for CGI scripts, database
interfaces, arbitrary-precision arithmetic --- are alhtled with Perl.

Perl is securePerl can perform "taint checking" to prevent security bhesc You can also run a program
in a "safe" compartment to avoid the risks inherent in exagutnknown code.

Perl is open for busines§housands of corporations rely on Perl for their informatiwocessing needs.

Perl is simple to learnPerl makes easy things easy and hard things possible. Peltesaedious tasks for
you, such as memory allocation and garbage collection.

Perl is conciseMany programs that would take hundreds or thousands of iimether programming
languages can be expressed in a page of Perl.

Perl is object orientedinheritance, polymorphism, and encapsulation are alligeal/by Perl’s object
oriented capabilities.

Perl is flexible.The Perl motto is "there’s more than one way to do it." The legg doesn'’t force a
particular style of programming on you. Write what comesurelty.

Perl is fun.Programming is meant to be fun, not only in the satisfactioseeing our well-tuned programs
do our bidding, but in the literary act of creative writingtlyields those programs. With Perl, the journey
is as enjoyable as the destination.

The Perl Philosophy

There’s more than one way to do it

The Perl motto is "there’s more than one way to do it" --- ofddbreviated TMTOWTDI. What this
means is that for any problem, there will be multiple waysgpraach it using Perl. Some will be
quicker, more elegant, or more readable than others, budtiesn’t make the other solutionsong

A correct Perl program...

"...is one that does the job before your boss fires you." Shiathe preface to the Camel book,
which is highly recommended reading.

Perl makes it easy to perform many tasks, and was built wilgg@mmer convenience in mind. It is
possible to develop Perl programs very quickly, althoughrésulting code is not always beautiful.
This course aims to teach not only the Perl language, buigaled programming practice in Perl as
well.

Three virtues of a programmer

The Camel book contains the following entries in its glogsar

Laziness

The quality that makes you go to great effort to reduce oleredrgy expenditure. It makes you
write labour-saving programs that other people will findfuse&nd document what you wrote so
you don'’t have to answer so many questions about it. Henedirgt great virtue of a programmer.

Perl Training Australia (http://perltraining.com.au/) 9

Chapter 3. What is Perl

Impatience

The anger you feel when the computer is being lazy. This mgdesvrite programs that don'’t just
react to your needs, but actually anticipate them. Or at jgr@¢end to. Hence, the second great
virtue of a programmer.

Hubris

Excessive pride, the sort of thing Zeus zaps you for. Alsajtieity that makes you write (and
maintain) programs that other people won't want to say bamjthabout. Hence, the third great
virtue of a programmer.

Three more virtues

In his "State of the Onion" keynote speech at The Perl Conter@.0 in 1998, Larry Wall described
another three virtues, which are the virtues of a commurdiproagrammers. These are:

- Diligence
- Patience
« Humility

You may notice that these are the opposites of the first thireeeg. However, they are equally
necessary for Perl programmers who wish to work togethestidr on a software project for their
company or on an Open Source project with many contributansral the world.

Share and enjoy!

Perl is Open Source software, and most of the modules andséates for Perl are also released
under Open Source licenses of various kinds (Perl itseflsased under dual licenses, the GNU
General Public License and the Artistic License, copieshutivare distributed with the software).

The culture of Perl is fairly open and sharing, and thousafdslunteers worldwide have
contributed to the current wealth of software and knowleslgglable to us. If you have time, you
should try and give back some of what you've received fromRed community. Contribute a
module to CPAN, help a new Perl programmer to debug her progjrar write about Perl and how
it's helped you. Even buying books written by the Perl gutike (many of the O'Reilly Perl books),
or subscribing to publications such as The Perl Journabktgie them the financial means to keep
supporting Perl.

Parts of Perl

10

The Perl interpreter

The main part of Perl is the interpreter. The interpretew@lable for Unix, Windows, and many
other platforms. The current version of Perl is 5.10.0, \whécavailable from the Perl website
(http:/lwww.perl.com/). Perl is generally available thgh most package managers in *nix systems.

Perl Training Australia (http://perltraining.com.au/)

Chapter 3. What is Perl
Windows users may find ActiveState’s Active Perl (http:/Amnactivestate.com/Products/activeperl/)
and Strawberry Perl (http://strawberryperl.com/) to bedjoptions.

Perl 6, a serious revision of the language, is under activeldpment. Perl 6 will share many
features in common with Perl 5, but will also provide a greatsnimprovements and features.

Manuals/Documentation

Along with the interpreter come the manuals for Perl. Theseaacessed via thgerldoc command

or, on Unix systems, also via ttlean command. More than 30 manual pages come with the current
version of Perl. These can be found by typmgn perl (or perldoc perl on non-Unix systems). The
Perl FAQs (Frequently Asked Questions files) are availabfeerldoc format, and can be accessed
by typingperldoc perlfaq.

Perl Modules

Perl also comes with a collection of modules. These are Pealries which carry out certain
common tasks, and can be included as common libraries inamgétipt. Less commonly used
modules aren't included with the distribution, but can bevdlmaded from CPAN
(http://www.cpan.org) and installed separately.

Chapter summary

« Common uses of Perl include
. text processing
.+ system administration
. CGl and web programming

- other Internet programming

- Perlis a general purpose programming language, distddoteree via the Perl website
(http://www.perl.com/) and mirror sites.

- Perlincludes excellent support for regular expressiobgab oriented programming, and other
features.

- Perl allows a great degree of programmer flexibility - "Theneore than one way to do it".

- The three virtues of a programmer are Laziness, Impatiemdéiabris. Perl will help you foster
these virtues.

- The three virtues of a programmer in a group environment drgeDce, Patience, and Humility.

+ Perlis a collaborative language - everyone is free to couiteito the Perl software and the Perl
community.

- Parts of Perl include: the Perl interpreter, documentatiaeveral formats and library modules.

Perl Training Australia (http://perltraining.com.au/) 11

Chapter 3. What is Perl

12 Perl Training Australia (http://perltraining.com.au/)

Chapter 4. A brief guide to perldoc

Depending upon your operating system, the way in which yeesxPerl's on-line documentation
may differ, but the information that is available should be same on all systems.

This chapter discusses Perl's on-line help on Unix flavowsetating systems. On such systems,
most of Perl’s help files are also available as man pages. tHaywean is not always good at finding
documentation embedded inside modules and programs, agpeedoc is very good at it.

Using perldoc

Table 4-1. Getting around in perldoc

Action Keystroke
Page down SPACE
Page up b

Quit q
Exercise

On the command line, typeerldoc perl. You will find yourself in the Perl documentation pages.

Language features and tutorials

Perl comes with a large amount of documentation detailiedahguage, as well as some tutorials to
help you learn. Learning the entire language from thesefiietpis not easy (that's why you have
these notes), but they’re a very useful reference material.

perldoc perl will provide you with a long list of help topics, angkrldoc perltoc will provide you
with the same list but with subsections, so you can easilschear what you're after.

You might notice that all the help files start wiibrl , such agerlfunc orperifag . This is so that
the Unix man pages can have the same names as the perldocaggaan perlfunc and you'll get
the same information ggerldoc perlfunc.

Feel free to experiment and read any pages that interestfygmu’re working on an unfamiliar
machine, you might fingerldoc perllocal handy to see which extra modules have been installed.
perldoc perlmodlib lists Perl's standard modules.

Looking up functions

If you're like most people, you'll occasionally forget thalling syntax or exact details of a
particular function. Rather than having to flick through dgimy book, or read through all of
perldoc perlfunc, there is an easier way to obtain the information that yoafter.perldoc -f
functi on lists all the information available about the desired fioret Try

Perl Training Australia (http://perltraining.com.au/) 13

Chapter 4. A brief guide to perldoc

« perldoc -f split
- perldoc -f grep
- perldoc -f map

This is probably the most common usepafridoc.

Searching the FAQs

Perl comes with several frequently asked questions (FAE9.fiThese cover everything from general
guestions about Perl to using Perl for system interactia@hnatworking. You can access these via
perldoc:perldoc perlfaq, perldoc perlfagl, perldoc perlfag2 and so on up tperldoc perlfaq®.
Alternately you can search these with thewtich: perldoc -q <keyword>. For example:

% perldoc -g round

Found in /usr/share/perl/5.8/pod/perlfag4.pod
Does Perl have a round() function? What about ceil() and
floor()? Trig functions?

Remember that int() merely truncates toward 0. For rounding
to a certain number of digits, sprintf() or printf() is
usually the easiest route.

(-]

Theq switch searches for your keyword in the text of the questimt of the answer. Where there
are multiple matching questions, they will be displayedssedially.

Looking up modules

While using and writing modules are not covered in this cepas your experience with Perl grows
you will find yourself dealing with modules more often. Youndand information about any installed
module simply by usingerldoc nodul e. For exampleperldoc CGI would tell you more about
Perl'sccl module, which is very useful in developing interactive wsites.

This also works for pragmas, of which we’ll cover a few todby: perldoc strict for more
information on thestrict ~ pragma.

To locate the install path of a particular module pseldoc -l rodul e_nane. To view the source of a
module userldoc -m nodul e_nane. To find all the modules installed on your system rpaddoc
-q installed.

14 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Creating and running a Perl
program

In this chapter...

In this chapter we will be creating a very simple "Hello wdrtogram in Perl and exploring some
of the basic syntax of the Perl programming language.

Logging into your account

However you're doing this course, you will have access to ahime on which to perform the
practical exercises. Your instructor will tell you the apts available to you.

You should find that you have arercises/ ~ directory available in your account or on your desktop.
This directory contains example scripts and answers tleatedierred to throughout these notes.

Our first Perl program

We're about to create our first, simple Perl script: a "heltrld program. There are a couple of
things you should know in advance:

- Perl programs (or scripts --- the words are interchangéablesist of a series of statements

« When you run the program, each statement is executed inftam the top of your script to the
bottom. (There are two special cases where this doesn’romee of which --- subroutine
declarations --- we'll be looking at tomorrow)

. Each statement ends in a semi-colon
. Statements can flow over several lines
« Whitespace (spaces, tabs and newlines) is ignored in mastpin a Perl script.

Now, just for practice, open a file calledio.pl in your editor. Type in the following one-line Perl
program:

print "Hello world!\n";

This one-line program calls theint function with a single parameter, ts&ing literal "Hello
world!" followed by a newline character.

Save it and exit.

Incidentally, Appendix G contains a guide to pronouncingAharacters, especially punctuation.
Perl makes use of many punctuation symbols, so this will Jelptranslate Perl into spoken
language, for ease of communication with other programmers

15
Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Creating and running a Perl program

Running a Perl program from the command line

We can run the program from the command line by typing in:

% perl hello.pl

You should see this output:

Hello world!

This program should, of course, be entirely self-explaryafthe only thing you really need to note
is the\n ("backslash N") which denotes a new line. If you are familigh the C programming
language, you'll be pleased to know that Perl uses the satagioto represent characters such as
newlines, tabs, and bells as does C.

Executing code

Writing perl in front of all of our programs to execute them can be a bit ohim pWhat if we want
to be able to run our program from the command line, withoutrigato always type that in?

Well... it depends on the operating system.

Various operating systems have different ways of detemgihow to react to different files. For
example, Microsoft Windows uses file extensions while théowes Unixes are completely indifferent
to all parts of the filename. Some operating systems use gire@pgou can set individually.

This can lead to some confusion when trying to write code torbes-platform. Where Microsoft
Windows will recognise that all files with @l extension should be passed to the Perl interpreter,
how can we ensure that we've done everything for the othéiopfas as well?

The "shebang" line for Unix

Unix and Unix-like operating systems do not automaticadlglise that a Perl script (which is just a
text file after all) should be executable. As a result, we teskethe operating system to change the
file’s permissions to allow execution:

% chmod +x hello.pl

Once the file is executable we also need to tell Unix how to eteethe program. This allows the
operating system to have many executable programs wriitdifferent scripting languages.

We tell the operating system to use the Perl interpreter bynach "shebang" line (called such
because the is a "hash" sign, and theis referred to as a "bang", hence "hashbang" or "shebang").

#!/usr/bin/perl

Of course, if the Perl interpreter were somewhere else osysiem, we’d have to change the
shebang line to reflect that.

This allows us to run our scripts just by typing:

% ./hello.pl

16 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Creating and running a Perl program

For security purposes, many Unix and Unix-like systems do not include your current directory in
those which are searched for commands, by default. This means that if you try to invoke your

script by typing:
% hello.pl # this doesn’'t work
you'll get the error: bash: hello.pl: command not found . This is why we prepend our command

with the current working directory (./hello.pl).

The "shebang" line for non-Unixes

It's always considered a good idea fl Perl programs to contain a shebang line. This is helpful
because it allows us to include command line options, whietl wover shortly.

If your program will only ever be run on your single operatsygtem then you can use the line:

#lperl

However it is considered good practice to use the traditiona

#!/usr/bin/perl

as this assists with cross-platform portability.

Command line options and warnings

A full explanation of command line options can be found in the Camel book on pages 486 to
505 (330 to 337, 2nd Ed) or by typing perldoc perlrun .

Perl has a number of command line options, which you can §peicithe command line by typing
perl opti ons hello.pl or which you can include in the shebang line. The most comynaséd
option is-w to turn on warnings:

#!/usr/bin/perl -w

It's always a good idea to turn on warnings while you're depéig code, and often once your code
has gone into production, too.

Lexical warnings

In Perl versions 5.6 and above you can use Pe#fsings pragma rather than the command line
switch if you prefer. This also gives you the option to spgeihich warnings you wish to receive,
and to upgrade those warnings to exceptions if necessary.

#!/usr/bin/perl

use warnings;

Perl Training Australia (http://perltraining.com.au/) 17

Chapter 5. Creating and running a Perl program

To learn more about this pragma read perldoc perllexwarn and perldoc warnings .

Comments

Comments in Perl start with a hash sigi), ither on a line on their own or after a statement.
Anything after a hash is a comment up to the end of the line.

#!/usr/bin/perl -w

This is a hello world program
print "Hello world!\n"; # print the message

Block comments

To comment a block of text (or code) you can use Perl's Plathcumentation tags (POD). You
can read more about POD jrerldoc perlpod.

=begin comment

This content is commented out.
It may span many lines.

print "This statement won't be executed by Perli\n";
=end comment
=cut

print "Hello world!\n"; # print the message

__END__

You can signal to Perl the end of your program by using theiape@®ND__tag. Anything below
__END__will be ignored by Perl. This is particularly useful if yousti to include a large amount of
documentation, or quickly comment out a large amount of codme step.

print "Hello world!\n"; # print the message
END

ﬂ text_and code from here downwards will be ignored by Perl.
print "This statement won't be executed by Perl\n";

Chapter summary

Here’s what you know about Perl’s operation and syntax so far

- Perl programs typically start with a "shebang" line.

- statements (generally) end in semicolons.

18 Perl Training Australia (http://perltraining.com.au/)

Chapter 5. Creating and running a Perl program

statements may span multiple lines; it's only the semicthat ends a statement.

comments are indicated by a hash (#) sign. Anything afteish kmyn on a line is a comment.
\n is used to indicate a new line.

whitespace is ignored almost everywhere.

command line arguments to Perl can be indicated on the shéinan

the-w command line argument turns on warnings.

Perl Training Australia (http://perltraining.com.au/) 19

Chapter 5. Creating and running a Perl program

20 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

In this chapter...

In this chapter we will explore Perl’'s three main variablpdy --- scalars, arrays, and hashes --- and
learn to assign values to them, retrieve the values storfttim, and manipulate them in certain
ways. More advanced information about Perl’s variablesamsignment to them can be found in
Appendix A.

What is a variable?

A variable is a place where we can store data. Think of it likégeonhole with a name on it
indicating what data is stored in it.

The Perl language is very much like human languages in magg,\8a you can think of variables as
being the "nouns" of Perl. For instance, you might have aatéeicalled "total" or "employee”.

Variable names

Variable names in Perl may contain alphanumeric charaictensper or lower case, and
underscores. A variable name may not start with a numbehaasrteans something special, which
we’ll encounter later. Likewise, variables that start vathything non-alphanumeric are also special,
and we’ll discuss that later, too.

It's standard Perl style to name variables in lower caséy witderscores separating words in the
name. For instancemployee_number . Upper case is usually used for constants, for instance
LIGHT_SPEEDOTr PI . Following these conventions will help make your Perl moantainable and
more easily understood by others.

Lastly, variable names all start with a punctuation signr@ctly known as a&igil) depending on
what sort of variable they are:

Table 6-1. Variable punctuation

Variable type Starts with Pronounced
Scalar S dollar

Array @ at

Hash 06 percent

(Don’t worry if those variable type names don’t mean anyghimyou. We're about to cover them.)

Variable scoping and the strict pragma

Many programming languages require you to "pre-declargakites --- that is, say that you're going
to use them before you do so. Variables can either be dedargtbbal (that is, they can be used
anywhere in the program) or local (they can only be used irséimee part of the program in which

21
Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

22

they were declared).

In Perl, it is not necessary to declare your variables befouebegin. You can summon a variable
into existence simply by using it, and it will be globally &#ehle to any routine in your program. If
you're used to programming in C or any of a number of other laggs, this may seem odd and
even dangerous to you. This is indeed the case. That's whywgotto use thetict pragma.

Arguments in favour of strictness

- avoids accidental creation of unwanted variables when yakena typing error

- avoids scoping problems, for instance when a subroutineaisariable with the same name as a
global variable

- allows for warnings if values are assigned to variables @awnused (which is great for detecting
typographical errors)

Arguments against strictness

- takes a while to get used to, and may slow down developmeititurcomes habitual
- enforces a structured style of coding which isn’t nearly asimfun

Of course, sometimes a little bit of structure is a good thiikg when you want the trains to run on
time. Because of this, Perl lets you turn strictness on ifwaat it, using something called tisérict
pragma A pragma, in Perl-speak, is a set of rules for how your code & dealt with.

Some documentation about the strict pragma can be found by reading perldoc strict . Its

effects are discussed on pages 858-860 (page 500 2nd Ed) of the Camel book.

Using the strict pragma (predeclaring variables)

Using strict and warnings will catch the vast majority of aoon programming errors, and also
enforces a more clean and understandable programmingBtflewing these conventions is also
very important if you wish to seek help from other more expeced programmers.

Here’s how the strict pragma is invoked:

#!/usr/bin/perl -w
use strict;

That typically goes at the top of your program, just undemahebang line and introductory
comments.

Once we use the strict pragma, we have to explicitly declavevariables usingny. For example:
my $scalar;
my @array;
my %hash;

my $number = 3;

Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

These variable declarations can occur anywhere in the gnognd it is good practice to declare
your variables just before you use them. We’'ll come back imithmore detail when we talk about
blocks and subroutines.

There’s more about use of my on pages 130-133 (page 189, 2nd Ed) of the Camel book.

Exercise

Try running the prograraxercises/strictfail.pl and see what happens. What needs to be done
to fix it? Try it and see if it works. By the way, get used to thisoe message - it's one of the most
common Perl programming mistakes, though it's easily fixed.

An answer for the above can be founcdkgdrcises/answers/strictfail.pl

Using the diagnostics pragma

Another pragma that you may find useful is the diagnosticgmpea This translates the normally
terse diagnostics emitted from the perl compiler and theiperpreter into much more useful ones.

To use this pragma, all you have to do is type:
use diagnostics;

at the start of your code.

The diagnostics pragma makes your warnings much more verhod it slows the start-up time of
your script considerably. You should remove it before pigttyour code into production.

All the extended diagnostics can also be found in perldoc perldiag , or in pages 916-978 of
the camel book (pages 557-597 2nd Ed).

Further information about the diagnostics pragma can be found by reading perldoc diagnostics

Exercise

You can see the diagnostics pragma in action by running thgramexercises/diagnostics.pl
If you want to, you can remove thge diagnostics; line to see the errors without the explanations.

Starting your Perl program

To summarise, your perl program should always start with:

1. A shebang line (with warnings)
2. A comment (what your program does)

3. The strict pragma

Perl Training Australia (http://perltraining.com.au/) 23

Chapter 6. Perl variables

For example:
#!/usr/bin/perl -w

This program
use strict;

You may wish to addse diagnostics; while your program is in development.

Scalars

24

The simplest form of variable in Perl is the scalar. A scaa single item of data such as:

+ Arthur

« Just Another Perl Hacker
. 42

- 0.000001

. 3.27el7

Here’s how we assign values to scalar variables:

my $name = "Arthur";

my $whoami = 'Just Another Perl Hacker’,

my $meaning_of_life = 42;

my $number_less_than_1 = 0.000001;

my $very_large_number = 3.27el7; # 3.27 by 10 to the power of 1 7

@There are other ways to assign things apart from the = operator, too. They're covered on pages
107-108 (pages 92-93, 2nd Ed) of the Camel book.

A scalar can be text of any length, and numbers of any prec{simchine dependent, of course).
Perl doesn’'t need us to tell it whitpeof data we're going to put into the scalar. In fact, Perl ddesn
care if the type of data in the scalar changes throughoutgmgram. Perl magically converts
between them when it needs to. For instance, it's quite legsdy:

Adding an integer to a floating point number.
my $sum = $meaning_of_life + $number_less_than_1;

Here we're putting the number in the middle of a string we
want to print.
print "$name says, 'The meaning of life is $meaning_of life AAn";

This may seem extraordinarily alien to those used to sgrigphed languages, but believe it or not,
the ability to transparently convert between variable $yigeone of the great strengths of Perl. Some
people say that it's also one of the great weaknesses.

@You can explicitly cast scalars to various specific data types. Look up int) on page 731 (page
180, 2nd Ed) of the Camel book, or read perldoc -f int for instance.

Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

If you really want strictly typed scalars, Perl lets you have them. Check out perldoc

Attribute::Types . This isn’t installed with Perl by default but can be found at its page on CPAN
(http://search.cpan.org/perldoc?Attribute:: Types). Attribute:: Types goes beyond specifying that
a given scalar can only hold an integer, for example, as it also allows you to say that it must be
between two given values. Alternately you may wish to insist that a string be a member of a

selected set or that a value corresponds to the date of a full moon. Attribute:: Types makes all
of these possible. Most Perl programmers don't find this necessary, but sometimes it's
invaluable.

If you want to understand how Perl handles numbers, read perldoc perinumber .

Double and single quotes

While we're here, let's look at the assignments above. Yee't that some have double quotes, some
have single quotes, and some have no quotes at all.

In Perl, quotes are required to distinguish strings fromainguage’s reserved words or other
expressions. Either type of quote can be used, but theresigngortant difference: double quotes
can include other variable names inside them, and thosablas will then be interpolated --- as in
the print example above --- while single quotes do not irdkie.

single quotes don't interpolate...
my $price = '$9.95;

double quotes interpolate...
my S$invoice_item = "24 widgets at $price each\n";

print $invoice_item;

Exercise

The above example is available in your directorgascises/interpolate.pl . Run the script to
see what happens. Try changing the type of quotes for eanly.sfvhat happens?

Special characters

Special characters, such as thenewline character, are only available within double qudsasgle
guotes will fail to expand these special characters justegfail to expand variable names. The
only exceptions are that you can quote a single quote or stkwith a backslash.

print 'Here\'s an example’;

When using either type of quotes, you must have a matchingpapening and closing quotes. If
you want to include a quote mark in the actual quoted text,cayuescape it by preceding it with a
backslash:

print "He said, \"Hello\"\n";
print ’It was Jamie\'s birthday.’;

Perl Training Australia (http://perltraining.com.au/) 25

Chapter 6. Perl variables

You can also use a backslash to escape other special cliarsaotl as dollar signs within double
quotes:

print "The price is \$300\n";

To include a literal backslash in a double-quoted string,tus backslashes:

C Be careful, there’s a common syntax error when the last character of a string is a backslash:

print 'This is a backslash: \’;

In this case Perl reads the backslash as an escape for the quote character, and thus our string
does not terminate. In this case you must tell Perl that you don’t want this effect by escaping the
backslash:

print 'This is a backslash: \V;

Perl has other quoting structures to help you avoid having to escape your quotes continually. To
read more about these, look at Appendix A.

Advanced variable interpolation
Sometimes you'll want to do something like the following:

my $what = “jumper”;
print "I have 4 $whats";

but this won't work, because there is no such varighiets , or if there is, it's probably not the one
we want to be using. We could do:

my $what = "jumper";
print "I have 4 " . $what . "s"

and if you like that, then it's fine. However, that's prettylyygand there’s a nicer looking way of
doing it which involves less keystrokes as well:

my $what = "jumper";
print "I have 4 ${what}s";

I’'m sure that you'll agree that's much better.

There are special quotes for executing a string as a shell command (see "Input operators" on

page 79 (page 52, 2nd Ed) of the Camel book), and also special quoting functions (see "Pick
your own quotes" on page 63 (page 41, 2nd Ed)). These are also covered in Appendix A.

26 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

Exercises

1. Write a script which sets some variables:
a. your name
b. your street number

c. your favourite colour

2. Print out the values of these variables using double gfotevariable interpolation.
3. Change the quotes to single quotes. What happens?

4. Write a script which prints out the strimwINDOWS\SYSTEM\twice -- once using double
guotes, once using single quotes. How do you have to escafmatkslashes in each case?

You'll find answers to the above ixercises/answers/scalars.pl

Arrays

If you think of a scalar as being a singular thing, arrays kheegiural form. Just as you have a flock
of chickens or a wunch of bankers, you can have an array cdiscal

An array is a list of (usually related) scalars all kept tbget Arrays start with am(at sign).

Arrays are discussed on pages 9-10 (page 6, 2nd Ed) of the Camel book and also in perldoc

perldata .

Initialising an array

Arrays are initialised by creating a comma separated lisabfes:

my @fruits = ("apples"”, "oranges", "guavas", "passionfrui t", "grapes");
my @magic_numbers = (23, 42, 69);
my @random_scalars = ("mumble”, 123.45, "willy the wombat" , -300);

As you can see, arrays can contain any kind of scalars. Thelaze just about any number of
elements, too, without needing to know how many before yat.®eallyany number - tens or
hundreds of thousands, if your computer has the memory.

Reading and changing array values

First of all, Perl's arrays, like those in many other langemare indexed from zero. We can access
individual elements of the array like this:

print $fruits[0]; # prints "apples"”
print $random_scalars[2]; # prints "willy the wombat"
$fruits[0] = "pineapples"; # Changes "apples" to "pineappl es"

Perl Training Australia (http://perltraining.com.au/) 27

Chapter 6. Perl variables

28

Wait a minute, why are we using dollar signs in the examplezapiostead of at signs? The reason is
this: we only want a scalar back, so we show that we want ars@dlare’s a useful way of thinking

of this, which is explained in chapter 1 (both editions) & amel book: if scalars are the singular
case, then the dollar sign is like the word "the" - "the narfidie meaning of life", etc. Th@sign on

an array, or theesign on a hash, is like saying "those" or "these" - "thesea"frithose magic
numbers". However, when we only want one element of the anr@yl be saying things like "the

first fruit" or "the last magic number" - hence the scalaeldollar sign.

Array slices

If we wanted to only deal with a portion of the array, we use twira call anarray slice These are
written as follows:

@fruits[1,2,3]; # oranges, guavas, passionfruit

@fruits[3,1,2]; # passionfruit, oranges, guavas

@magic_numbers[0..2]; # 23, 42, 69

@magic_numbers[1..5] = (46, 19, 88, 12, 23); # Assigns new ma gic numbers

You'll notice that these array slices ha@signs in front of them. That's because we're still dealing
with a list of things, just one that'’s (typically) smallerafthe full array. It is possible to take an
array slice of a single element:

@fruits[1]; # array slice of one element

but this usually means that you've made a mistake and Pdnvaih you that what you really
should be writing is:

$fruits[1];

You just learnt something new back there: thg"dot dot") range operator creates a temporary list
of numbers between the two you specify. In our case we spééifand 2 (then 1 and 5), but it could
have been 1 to 100, or 30 to 70, if we'd had an array big enougkéat on. You'll run into this
operator again and again.

See pages 103-104 (pages 90-91, 2nd Ed) of the Camel book or perldoc perlop for more

information about the dot dot operator.

Array interpolation

Another thing you can do with arrays is insert them into angtrthe same as for scalars:

print "My favourite fruits are @fruits\n"; # whole array
print "Two types of fruit are @fruits[0,2]\n"; # array slice
print "My favourite fruit is $fruits[3]\n"; # single elemen t

Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

Counting backwards
It's also possible to count backwards from the end of an alikeythis:

$fruits[-1]; # Last fruit in the array, grapes in this case.
$fruits[-3]; # Third last fruit: guavas.

Finding out the size of an array

So if we don’t know how many items there are in an array, howweariind out? There are two ways
you might do this.

There’s a special syntaptarray Which is the index of the last element, so you can say:

my $last = $#fruits; # index of last element

However, if you print eitheslast or $#fruits ~ you'll find the value is4, which is not the same as
the number of elements: 5. Remember that it'sitfteex of the last elemennd that the indestarts
at zerqg so you have to add one to it to find out how many elements afesiarray.

my $number_of fruits = $#fruits + 1;

If the array is emptyg#fruits ~ returns-1 .

Unfortunatelysg#fruits is easily confused withsfruits (2 comment!), and it can often cause
off-by-one errors and other bugs. Thus it is generally adergid a bad idea.

Fortunately, there’s an easier way to find out the size of eayalf you evaluate the array in a scalar
context Perl will give you the only scalar value that makessethe number of elements in the array.

my $fruit_count = @fruits;

@There’s a more explicit way to do it as well --- scalar(@fruits) and int(@fruits) will also tell us
how many elements there are in the array. Both of these functions force a scalar context, so
they're really using the same mechanism as the $fruit_count example above. We'll talk more
about contexts soon.

Using gw// to populate arrays

If you're working with lists and arrays a lot, you might findathit gets very tiresome to be typing so
many quotes and commas. Let’s take our fruit example:

my @fruits = ("apples”, "oranges", "guavas", “passionfrui t", "grapes");

We had to type the quotes character ten times, along withdoemas, and that was only for a short
list. If your list is longer, such as all the months in a yehen you'll need even more punctuation to
make it all work. It's easy to forget a quote, or use the wroungtg, or misplace a comma, and end
up with a trivial but bothersome error. Wouldn't it be nicehiere was a better way to create a list?

Well, there is a better way, using the// operatorqw// stands foiquote wordslt takes whitespace
separated words and turns them into a list, saving you frormbdo worry about all that tiresome
punctuation. Here’s our fruit example again ustg :

Perl Training Australia (http://perltraining.com.au/) 29

Chapter 6. Perl variables

30

my @fruits = qw/apples oranges guavas passionfruit grapes/

As you can see, this is clear, concise, and difficult to getngré\nd it keeps getting better. Your list
can stretch over multiple lines, and your delimiter doesrtd to be a slash. Whatever punctuation
character that you place after thebecomes the delimiter. So if you prefer parentheses ovehneta
that’s no problem at all:

my @months = gw(January February March April May June July Au gust
September October November December);

For more information about qw// and other quoting mechanisms, see see "Pick your own

quotes" on page 63 (page 41, 2nd Ed) of the Camel book. There’s also an excellent discussion
in perldoc perlop in the Quote and Quote-like Operators section. This is also covered in
Appendix A.

Printing out the values in an array
If you want to print out all the values in an array there aressgMways you can do it:

my @fruits = qw/apples oranges guavas passionfruit grapes/ ;
print @fruits; # prints "applesorangesguavaspassionfrui tgrapes"

print join(", ", @fruits);# prints "apples, oranges, guava s, passionfruit, grapes"
print "@fruits"; # prints "apples oranges guavas passionfr uit grapes"

The first method takes advantage of the fact that print takes @ arguments to print and prints
them out sequentially. The second upeg) which joins an array or list together by separating
each element with the first argument. The third option usebl@oquote interpolation and a little bit
of Perl magic to pick which character(s) to separate the saiith.

A quick look at context

There’s a term you've heard used just recently but which’hasen explainedcontext Context
refers to how an expression or variable is evaluated in Phd.two main contexts are:

- scalar context, and
« list context

Scalar variables are always evaluated in scalar contewgVer arrays and hashes can be evaluated
in both scalar contexts (when we treat them as scalars) stntbintexts (when we treat them as
arrays and hashes).

Here’s an example of an expression which can be evaluatethar eontext:

my @newarray = @array; # list context
my $howmany = @array; # scalar context
my $howmany2 = scalar(@array); # scalar context again (expl icitly)

If you look at an array in a scalar context, you'll see how malgments it has; if you look at it in
list context, you'll see the contents of the array itself.

Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

Many things in Perl are very specific about which context ttezyuire and willforcelists into scalar
context when required. For example théplus or addition) operator expects that its two arguments
will be scalars. Hence:

my @a = (1,2,3);
my @b = (4,5,6,7);
print @a + @b;

will print 7 (the sum of the two list’s lengths) rather thary 9 7 (the individual sums of the list
elements).

@Many things in Perl have different behaviours depending upon whether or not they’re in an array
or scalar context. This is generally considered a good thing, as it means things can have a "Do
What | Mean" (DWIM) behaviour depending upon how they are used. Arrays are the most
common example of this, but we’ll see some more as we progress through the course.

There’s also a third type of context, the null context, where the result of an operation is just
thrown away. This usually isn’t discussed, because by its very definition we don’t care about
what result is returned.

What's the difference between a list and an array?
Not much, really. A list is just an unnamed array. Here’s a destration of the difference:

printing a list of scalars
print ("Hello", " ", $name, "\n");

printing an array
my @bhello = ("Hello", " ", $name, "\n");
print @hello;

If you come across something that wants a LIST, you can egfiverit the elements of list as in the
first example above, or you can pass it an array by name. If gmeacross something that wants an
ARRAY, you have to actually give it the name of an array. Exéspf functions which insist on
wanting an ARRAY areush() andpop() , which can be used for adding and removing elements
from the end of an array.

List values and Arrays are covered on page 72 (page 47, 2nd Ed) of the Camel book.

Exercises

1. Create an array of your friends’ names. (You're encoutageise thew() operator.)
2. Print out the first element.
3. Print out the last element.

4. Print the array within a double-quoted string,dent "@friends"; and notice how Perl
handles this.

Perl Training Australia (http://perltraining.com.au/) 31

Chapter 6. Perl variables
5. Print out an array slice of the 2nd to 4th items within a detduoted string (variable
interpolation).
6. Replace every second friend with another friend.

7. Write a print statement to print out your email addresswvidan you handle thewhen you're
using double quotes?

Answers to the above can be founckkercises/answers/arrays.pl

Advanced exercises

1. Print the array without putting quotes around its nameyig& @friends; . What happens?
How is this different from what happens, when you printeddhay enclosed in double quotes?

2. What happens if you have a small array and then you assighua tosarray[1000] ? Print out
the array.

Answers to the above can be founckkarcises/answers/arrays_advanced.pl

Hashes

A hash is a two-dimensional array which contains keys andeglthey’re sometimes called
"associative arrays", or "lookup tables". Instead of legkiip items in a hash by an array index, you
can look up values by their keys.

To find out more about hashes and hash slices have a look ahdpp®.

Hashes are covered in the Camel book on pages 6-10 (pages 7-8, 2nd Ed), then in more

detail on pages 76-78 (page 50, 2nd Ed) or in perldoc perldata .

Initialising a hash

Hashes are initialised in exactly the same way as arrayl,axibomma separated list of values:
my %monthdays = (“January”, 31, "February”, 28, "March", 31 ;)

Of course, there’s more than one way to do it:

my %monthdays = (

"January" => 31,
"February" => 28,
"March" => 31,

)
The spacing in the above example is commonly used to makedsaginments more readable.

The=> operator is syntactically the same as the comma, but is osgidtinguish hashes more easily
from normal arrays. It's pronounced "fat comma”, or lesgwfifat arrow". It does have one
difference, you don't need to put quotes around a bare wonagddiately before the> operator as
these are always treated as strings:

32 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

my %monthdays = (

January => 31,

February = 28,

March => 31,
)

Note that we still have to quote strings on the right hand sid e.
my %pizza_prices = (

small => '$5.00’,

medium => '$7.50’,

large => '$9.00,

Reading hash values
You get at elements in a hash by using the following syntax:

print $monthdays{"January"}; # prints 31

Again you'll notice the use of the dollar sign, which you shibread as "the monthdays value
belonging to January".

Bare words inside the braces of the hash-lookup will be preged in Perl as strings, so usually you
can drop the quotes:

print $monthdays{March}; # prints 31

Adding new hash elements
You can also create elements in a hash on the fly:

$monthdays{"January"} = 31,
$monthdays{February} = 28;

Changing hash values
To change a value in a hash, just assign the new value to ygur ke

$pizza_prices{small} = '$6.00’; # Small pizza prices have g one up

Deleting hash values
To delete an element from a hash you need to useedtbe function. This is used as follows:

delete($pizza_prices{medium}); # No medium pizzas anymor e.

Perl Training Australia (http://perltraining.com.au/) 33

Chapter 6. Perl variables

Finding out the size of a hash

Strictly speaking there is no equivalent to using an array$calar context to get the size of a hash.
If you take a hash in a scalar context you get back the numbmraiets used in the hash, or zero if
it is empty. This is only really useful to determine whethenot there are any items in the hash, not
how many.

If you want to know the size of a hash, the number of key-vahiespyou can use theys function
in a scalar context. Theeys function returns a list of all the keys in the hash.

my $size = keys %monthdays;
print $size; # prints "12" (so long as the hash contains
all 12 months)

Other things about hashes

. Hashes have no internal order.

- There are functions such asch() , keys() andvalues() which will help you manipulate hash
data. We look at these later, when we deal with functions.

- Hash lookup is very fast, and is the speediest way of storatg that you need to access in a
random fashion.

You may like to look up the following functions which related to hashes: keys() , values() ,

each() , delete() ,exists() ,and defined() . You can do that using the command perldoc -f
function-nane.

@While it is true that traditional Perl hashes have no internal order, it is possible to keep insertion
order by also storing the keys in an array. Doing this yourself can be error-prone so to make
things easier, you can use the Tie:IxHash ~ module which manages this work for you.

use Tie::IxHash;

my %hash;
tie (%hash, Tie::IxHash);

work with hash normally.

Tie::IxHash is available from CPAN, and you can read more at
http://search.cpan.org/perldoc?Tie::IxHash

To understand how this module works you may want to read perldoc perltie .

Exercises

1. Create a hash of people and something interesting abemt th

2. Print out a given person’s interesting fact.

34 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

. Change a person'’s interesting fact.
. Add a new person to the hash.

. What happens if you try to print an entry for a person who'in the hash?

o O~ W

. What happens if you try to print out the hash outside of argtes? Look at the order of the
elements.

7. What happens if you try to print out the hash inside doublgtes? Do you understand why this
happens?

8. What happens if you attempt to assign an array as a valogadutr hash?

Answers to these exercises are givemstrcises/answers/hash.pl

Special variables

Perl has many special variables. These are used to setiewvestertain values which affect the way
your program runs. For instance, you can set a special Vatialburn interpreter warnings on and
off ($"w), or read a special variable to find out the command line agqnispassed to your script

(@ARGN

Special variables can be scalars, arrays, or hashes. \d@kldt some of each kind.

Special variables are discussed at length in chapter 2 of your Camel book (from page 653

(page 127, 2nd Ed) onwards) and in the perivar manual page. You may also like to look up the
English module, which lets you use longer, more English-like names for special variables. You'll
find more information on this by using perldoc English to read the module documentation.

Special variables don’t need to be declared like reguldalkitas, as Perl already knows they exist. In
fact, it's an error to try and declare a special variable wigh

C Changing a special variable in your code changes it for the entire program, from that point
onwards.

The special variable $

The special variable that you'll encounter most often, Ifedas_ ("dollar-underscore"), and it
represents the current thing that your Perl script’'s waykiith --- often a line of text or an element
of a list or hash. It can be set explicitly, or it can be set iy by certain looping constructs
(which we’ll look at later).

The special variablg_ is often the default argument for functions in Perl. Foramste, theprint()
function defaults to printing_.

$_ = "Hello world"\n";
print;

If you think of Perl variables as being "nouns", thgenis the pronoun "it".

Perl Training Australia (http://perltraining.com.au/) 35

Chapter 6. Perl variables

There’s more discussion of using $_ on page 658 (page 131, 2nd Ed) of your Camel book.

@ARGYV - a special array
Perl programs accept arbitrary arguments or parameterstire command line, like this:

% printargs.pl foo bar baz

This passes "foo", "bar" and "baz" as arguments into ouramgwhere they end up in an array
called@ARGY

%ENV - a special hash

Just as there are special scalars and arrays, there is aldpesti calledeenv This hash contains the
names and values of environment variables. For examplealhe of the environment variable
USER is available isENV{"USER"} . TO view these variables under Unix, simply ty@av on the
command line. To view these under Microsoft Windows tgpée

@Changing a value in the %ENV hash changes your program’s current environment. Any changes
to your program environment will be inherited by any child processes your program invokes.
However you cannot change the environment of the shell from which your program is called.

Exercises

1. Sets_ to a string like "Hello world", then print it out by using tipent() command’s default
argument.

2. Theprintargs script mentioned in the @ARGYV example can be found in
exercises/printargs.pl . Run this script now passing in some arguments.

3. Write a program which takes two arguments from the comntiaeda name and a favourite
food) and then prints out a message detailing that nametlileg$ood. An answer can be found
in exercises/answers/favouritefood.pl

4. A user’s home directory is stored in the environment \@eiaOMEUnix) or HOMEPATKMS
Windows). Print out your own home directory.

5. What other things can you find #EN® You can find an answer #xercises/answers/env.pl

Chapter summary

- Perl variable names typically consist of alphanumeric abi@rs and underscores. Lower case
names are used for most variables, and upper case for glohstants.

36 Perl Training Australia (http://perltraining.com.au/)

Chapter 6. Perl variables

The statementse strict; is used to make Perl require variables to be pre-declaretbaabid
certain types of programming errors.

There are three types of Perl variables: scalars, arraghashes.

Scalars are single items of data and are indicated by a didjarg) at the beginning of the
variable name.

Scalars can contain strings, numbers and references.

Strings must be delimited by quote marks. Using double qonateks will allow you to interpolate
other variables and meta-characters such gaewline) into a string. Single quotes do not
interpolate.

Arrays are one-dimensional lists of scalars and are inglichy an at sign@ at the beginning of
the variable name.

Arrays are initialised using a comma-separated list ofsssahside round brackets.
Arrays are indexed from zero

Itemn of an array can be accessed by usiagaynameln].

The index of the last item of an array can be accessed by @gingyname .

The number of elements in an array can be found by intergré¢hi@ array in a scalar context, eg
my $items = @array;

Hashes are two-dimensional arrays of keys and values, anddicated by a percent sig#) (at
the beginning of the variable name.

Hashes are initialised using a comma-separated list cduscalside curly brackets. Whitespace
and the=> operator (which is syntactically identical to the comma) ba used to make hash
assignments look neater.

The value of a hash item whose keyds can be accessed by usisighshname{foo}

Hashes have no internal order.

$_ is a special variable which is the default argument for magy fanctions and operators
The special arragARGeontains all command line parameters passed to the script

The special hasthENnwontains information about the user’s environment.

Perl Training Australia (http://perltraining.com.au/) 37

Chapter 6. Perl variables

38 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

In this chapter...

In this chapter, we look at some of the operators and funstidmnich can be used to manipulate data
in Perl. In particular, we look at operators for arithmetidatring manipulation, and many kinds of
functions including functions for scalar and list manigida, more complex mathematical
operations, type conversions, dealing with files, etc.

What are operators and functions?

Operators and functions are routines that are built intd?t#rt language to do stuff.

The difference between operators and functions in Perl eratvicky subject. There are a couple of
ways to tell the difference:

- Functions usually have all their parameters on the rightitsiahe,
- Operators can act in much more subtle and complex ways thmatidns,

- Look in the documentation --- if it's iperldoc perlop, it's an operator; if it's inperldoc
perlfunc, it's a function. Otherwise, it's probably a subroutine.

The easiest way to explain operators is to just dive on ingse tve go.

Operators

There are lists of all the available operators, and what they each do, on pages 86-110 (pages
76-94, 2nd Ed) of the Camel book. You can also see them by typing perldoc perlop .
Precedence and associativity are also covered there.

If you've programmed in C before, then most of the Perl opgsabvill be already be familiar to you.
Perl operators have the same precedence as they do in Cldeeatlds a number of new operators
which C does not have.

Arithmetic operators

Arithmetic operators can be used to perform arithmetic ap@ns on variables or constants. The
commonly used ones are:

Table 7-1. Arithmetic operators

Operator Example Description
+ $a + $b Addition
- $a - $b Subtraction

Perl Training Australia (http://perltraining.com.au/) 39

Chapter 7. Operators and functions

Operator Example Description
* $a * $b Multiplication
$a / $b Division
% $a % $b Modulus (remainder whesn is
divided bysb, eg 11 % 3 = 2)
pex $a = $b Exponentiationga to the power
of $b)

Just like in C, there are some short cut arithmetic operators

$a += 1; # same as $a = $a + 1
$a -= 3; # same as $a = $a - 3

$a *= 42; # same as $a = $a * 42
$a /= 2; # same as $a = $a / 2

$a %= 5; # same as $a = $a % 5;
$a # = 2; # same as $a = $a 2,

(In fact, you can extrapolate the above with just about argraior --- see page 26 (page 17, 2nd Ed)
of the Camel book for more about this).

You can also usga++ andsa-- if you're familiar with such things++s$a and--$a also exist, which
increment (or decrement) the variable before evaluating it

For example:

my $a = 0;

print $a++; # prints "0", but sets $a to 1.

print ++%$a; # prints "2" after it has set $a to 2.

String operators

Just as we can add and multiply numbers, we can also do sititeys with strings:

Table 7-2. String operators

Operator Example Description

$a . $b Concatenation (puts andsb
together as one string)

X $a x $b Repeat (repeat $b times --- eg
"foo" x 3 gives us "foofoofoo"

These can also be used as short cut operators:

$a .= " foo"; # same as $a = $a . " foo";
$a .= $bar; # same as $a = $a . $bar;
$a x= 3; # same as $a = $a x 3;

There’s more about the concatenation operator on page 95 (page 16, 2nd Ed) of the Camel
book.

40 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

Exercises

1. Calculate the cost of 17 widgets at $37.00 each and peratiswer. (Answer:
exercises/answers/widgets.pl)

2. Print out a line of dashes without using more than one daghur code (except for the).
(Answer:exercises/answers/dashes.pl)

3. Look overexercises/operate.pl for examples on how to use arithmetic and string operators.

Other operators

You'll encounter all kinds of other operators in your Penlezzx, and they're all described in the
Camel book from page 86 (page 76, 2nd Ed) onwards. We'll cthham as they become necessary to
us -- you've already seen operators such as the assignmenattopg), the fat comma operatox)
which behaves a bit like a comma, and so on.

@While we're here, let’s just mention what "unary" and "binary" operators are.

A unary operator is one that only needs something on one side of it, like the file operators or the
auto-increment (++) operator.

A binary operator is one that needs something on either side of it, such as the addition operator.

A trinary operator also exists, but we don’t deal with it in this course. C programmers will
probably already know about it, and can use it if they want.

Functions

There’s an introduction to functions on page 16 (page 8, 2nd Ed) of the Camel book, labelled

"Verbs'. Check out perldoc perlfunc too.

To find the documentation for a single function you can use perldoc -f functi onnane. For
example perldoc -f print will give you all the documentation for the print function.

A function is like an operator --- and in fact some functiowsidle as operators in certain conditions
--- but with the following differences:

- longer names which are words rather than punctuation,
- can take any types of arguments,
- arguments always congdter the function name.

The only real way to tell whether something is a function ooperator is to check theriop and
perfunc manual pages and see which it appears in.

Perl Training Australia (http://perltraining.com.au/) 41

Chapter 7. Operators and functions

We've already seen and used a very useful funcgient: . The print function takes a list of
arguments (to print). For example:

my @array = qw/Buffy Willow Xander Giles/;

print @array; # print taking an array (which is just a named i st).

print "@array"; # Variable interpolation in our string adds spaces
between elements.

print "Willow and Xander"; # Printing a single string.
print("Willow and Xander"); # The same.

As you'll have noticed, Perl does not insist that functionslese their arguments within
parentheses. Bofftint "Hello"; andprint("Hello"); are correct. Feel free to use parentheses if
you want to. It usually makes your code easier to read.

C There are good reasons for using parentheses all the time, because it's easy to make certain
mistakes if you don't. Take the following example:

print 3 + 7) * 4 # Wrong!

This prints 10, not 40. The reason is that whenever any Perl function sees parentheses after a
function or subroutine name, it presumes that to be its argument list. So Perl has interpreted the
line above as:

(print(3+7)) *4;

That's almost certainly not what you wanted. In fact, if you forgot to turn warnings on, it would
almost certainly provide you with many hours of fruitless debugging.

The best way of getting around this is to always use parentheses around your arguments:

print ((3+7) * 4); # Correct!

As you become more experienced with Perl, you can learn when it's safe to drop the
parentheses.

Types of arguments

Functions typically take the following kind of arguments:

SCALAR -- Any scalar variable, for examplez, "foo" , Or $a.

EXPR -- An expression (possibly built out of terms and opmgtwhich evaluates to a scalar.
LIST -- Any named or unnamed list (remember that a nameddliahiarray).

ARRAY -- A named list; usually results in the array being niiet.

HASH -- Any named hash.

PATTERN -- A pattern to match on --- we'll talk more about thdater on, in Regular Expressions.

FILEHANDLE -- A filehandle indicating a file that you've opetier one of the pseudo-files that is
automatically opened, such as STDIN, STDOUT, and STDERR.

There are other types of arguments, but you're not likelygedhto deal with them in this course.

42 Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

In chapter 29 (chapter 3, 2nd Ed) of the Camel book (starting on page 677, or page 141 2nd

Ed), you'll see how the documentation describes what kind of arguments a function takes.

Return values

Just as functions can take arguments of various kinds, thewlso return values which you can use.
The simplest return value is nothing at all, although thisie for Perl functions. Functions typically
return scalars or lists which you can; use immediately,wr&gdfor later or ignore.

If a function returns a scalar, and we want to use it, we carssayething like:

my $age = 29.75;
my $years = int($age);

andsyears will be assigned the returned value of thg function when given the argumestge
---in this case, 29, sindet() truncates instead of rounding.

If we just wanted to do something to a variable and didn’t eelnat value was returned, we can call
the function without looking at what it returns. Here’s arample:

my $input = <STDIN>;
chomp($input);

chomp, as you'll see if you typ@erldoc -f chomp, is typically used to remove the newline character
from the end of the arguments given tocliomp returns the number of characters removed from all
of its arguments<STDIN> takes a line from STDIN (usually the keyboard). We talk mdrew this
later.

Functions can also return arrays and hashes, as well asssdadaexample, theort function
returns a sorted array:

@sorted = sort @array;

More about context

We mentioned earlier a few things abdist contextandscalar contextand how arrays act
differently depending upon how you treat them. Functiorgs@werators are the same. If a function
or operator acts differently depending upon context, it bél noted in the Camel book and the
manual pages.

Here are some Perl functions that care about context:

Table 7-3. Context-sensitive functions

What? Scalar context List context

reverse() Reverses characters in a stringReverses the order of the
elements in an array.

each() Returns the next key in a hash|Returns a two-element list
consisting of the next key and
\value pair in a hash.

Perl Training Australia (http://perltraining.com.au/) 43

Chapter 7. Operators and functions

What? Scalar context List context

gmtime() andlocaltime() Returns the time as a string in |[Returns a list of second, minute,
common format. hour, day, etc.

keys() Returns the number of keys (afiRkturns a list of all the keys in &

hence the number of key-valughash.
pairs) in a hash.

readdir() Returns the next flename in a |Returns a list of all the filenames
directory, or undef if there are fin a directory.
more. T

There are many other cases where an operation varies dagendcontext. Take a look at the notes
on context at the start gferldoc perlfunc to see the official guide to this: "anything you want,
except consistency".

Some easy functions

44

Starting on page 683 (page 143, 2nd Ed) of the Camel book, there is a list of every single

Perl function, their arguments, and what they do. These are also listed in perldoc perlfunc .

String manipulation

Finding the length of a string

The length of a string can be found using téeth() function:
#l/usr/bin/perl -w

use strict;

my $string = "This is my string";
print length($string);

Case conversion

You can convert Perl strings from upper case to lower caségcerversa, using thie() anduc()
functions, respectively.

#!/usr/bin/perl -w

print Ic("Hello World!"); # prints "hello world!"
print uc("Hello World!"); # prints "HELLO WORLD!"

Thelcfirst() anducfirst() functions can be used to change only the first letter of agstrin
#!/usr/bin/perl -w

print Icfirst("Hello World!"); # prints "hello World!"
print ucfirst(lc("Hello World!")); # prints "Hello world!

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

Notice how, in the last line of the example above, dbiest() operates on the result of the)
function.

chop() and chomp()

Thechop() function removes the last character of a string and retinaischaracter.
#!/usr/bin/perl -w

use strict;
my $string = "Goodbye";

my $char = chop $string;
print $char; # "e"
print $string; # "Goodby"

Thechomp() function works similarly, bubnly removes the last character if it is a newline. It will
only remove a single newline per stringjomp() returns the number of newlines it removed, which
will be 0 or 1 in the case afhomping a single stringchomp() is invaluable for removing extraneous
newlines from user input.

#!/usr/bin/perl -w
use strict;

my $stringl
my $string2

= "let's go dancing!";

= "dancing, dancing!\n";
my $chompl
my $chomp2

chomp $stringl;
chomp $string2;

print $stringl; # "let's go dancing!";
print $string2; # "dancing, dancing!;

print $chomp1; # 0 (there was no newline to remove)
print $chomp2; # 1 (removed one newline)

Both chop andchomp can take a list of things to work on instead of a single elemégou chop a
list of strings, only the value of the last chopped charaisteeturned. If yowhomp a list, the total
number of characters removed is returned.

@Actually, chomp removes any trailing characters that correspond to the input record separator
($/), which is a newline by default. This means that chomp is very handy if you're reading in
records which are separated by known strings, and you want to remove your separators from
your records.

String substitutions with substr()

Thesubstr() function can be used to return a portion of a string, or to geamportion of a string.
substr takes up to four arguments:

1. The string to work on.

2. The offset from the beginning of the string from which tarsthe substring. (First character has
position zero).

Perl Training Australia (http://perltraining.com.au/) 45

Chapter 7. Operators and functions

46

3. The length of the substring. Defaults to be from offsetrtd ef the string.

4. String to replace the substring with. If not supplied, eplacement occurs.

#!/usr/bin/perl -w

use strict;
my $string = " #+ Hello world! wxx \n";
print substr($string, 4, 5); # prints "Hello"

substr($string, 4, 5) = "Greetings";
print $string; # prints " *x Greetings world! wkk !

substr($string, 4, 9, "Howdy");
print $string; # prints " wx Howdy world! wxx "

Exercises

1. Create a scalar variable containing the phrase "Thera's than one way to do it" then print it
outin all upper-case. (Answesxercises/answers/tmtowtdi.pl)

2. Print out the third character of a word entered by the us@anaargument on the command line.
(There’s a starter script isxercises/thirdchar.pl and the answer’s in
exercises/answers/thirdchar.pl)

3. Create a scalar variable containing the string "The goiiokvn fox jumps over the lazy dog".
Print out the length of this string, and then using subsintmut the fourth word (fox).
(Answer:exercises/answers/substr.pl)

4. Replace the word "fox" in the above string with "kitten".

Numeric functions

There are many numeric functions in Perl, including trigmedric functions and functions for
dealing with random numbers. These include:

« abs() (absolute value)

« cos() ,sin() , andatan2()

- exp() (exponentiation)

« log() (logarithms)

« rand() andsrand() (random numbers)

« sgrt) (square root)

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

Type conversions

The following functions can be used to force type conversi@ryou really need them):

* oct()
* int()
* hex()
* chr()
 ord()

« scalar()

Manipulating lists and arrays

Stacks and queues
Stacks and queues are special kinds of lists.

A stack can be thought of like a stack of paper on a desk. Trangput onto the top of it, and taken
off the top of it. Stacks are also referred to as "LIFO" (foa4t In, First Out").

A queue, on the other hand, has things added to the end of taéad out of the start of it. Queues
are also referred to as "FIFO" lists (for "First In, First Qut

We can simulate stacks and queues in Perl using the follofuimgtions:

« push() --add items to the end of an array.

« pop() --remove items from the end of an array.

. shift) -- remove items from the start of an array.

- unshiff) -- add items to the start of an array.

A queue can be created pysh ing items onto the end of an array astitt ing them off the front.

A stack can be created Ipysh ing items on the end of an array apab ping them off.

my @stack = gw(a b ¢ d e f g);
my @queue = qw(l 2 3456 7 8 9 10);

Pop something off the stack:
my $current = pop @stack; # stack is now: a b c d e f

Push something on to the stack:
push @stack, 'h’; # stack is now: a bcde fh

Push something on to the queue:
push @queue, '11’; # queue is now: 1 23456789 10 11

Shift something off the queue:
my $next = shift @queue; # queue is now: 2 34567 89 10 11

Perl Training Australia (http://perltraining.com.au/) a7

Chapter 7. Operators and functions

48

Ordering lists

Thesort() function, when used on a list, returns a sorted version dfligtalt does notalter the
original list.

Thereverse() function, when used on a list, returns the list in reversepitidoes noflter the
original list.

#!/usr/bin/perl -w
my @list = ("a", "z", "c", "'m");

my @sorted = sort(@list);
my @reversed = reverse(sort(@list));

Converting lists to strings, and vice versa

Thejoin() function can be used to join together the items in a list inte string. Conversely,
split() ~ can be used to split a string into elements for a list.

#!/usr/bin/perl -w

use strict;

my $record = "Fenwick:Paul:Melbourne:Australia”;

my @fields = split(/:/,$record);

@fields is now ("Fenwick","Paul","Melbourne","Austral ia");

my $newrecord = join(",",@fields);

$newrecord is now "Fenwick,Paul,Melbourne,Australia”;

The/s in the split function is aegular expressionit tells split what it should split on. We'll cover

regular expressions in more details later.

Using split and join in simple cases such as the above is fine. However often real world

data is much more complicated, such as comma or tab separated files, where the separator may

be allowed within the fields as well. For such tasks, we recommend the use of the Text:CSV_XS
module from CPAN.

Exercises

These exercises range from easy to difficult. Answers anaged in the exercises directory
(filenames are given with each exercise).

1. Usingsplit , print out the fourth word of the string "The quick brown faxps over the lazy

dog".
2. Print a random number.
3. Print a random item from an array. (Answeteércises/answers/quotes.pl)
4. Print out a sentence in reverse

a. reverse the whole sentence (@@gtnes elohw eht esrever).

Perl Training Australia (http://perltraining.com.au/)

Chapter 7. Operators and functions

b. reverse just the words (egprds the just reverse).

(Answer:exercises/answers/reverse.pl) Hint: You may findsplit ~ (perldoc -f split) useful
for this exercise.

5. Write a program which takes words on the command line aimigghem out in a sorted order.
Change your sort method from asciibetical to alphabetitit: you may wish to reagerldoc
-f sort to see how you can pass your own comparison to the sort fun¢mswer:
exercises/answers/command_sort.pl)

6. Add and remove items from an array usggh, pop, shift andunshift . (Answer:
exercises/answers/pushpop.pl)

Hash processing

Thedelete() function deletes an element from a hash.
Theexists() function tells you whether a certain key exists in a hash.
Thekeys() andvalues() functions return lists of the keys or values of a hash, respy.

Theeach() function allows you to iterate over key-value pairs.

Reading and writing files

Theopen() function can be used to open a file for reading or writing. dibse() function closes a
file after you're done with it.

We cover reading from and writing to files later in the cour@eese are not covered further here.

Time
Thetime() function returns the current time in Unix format (that isg thumber of seconds since 1

Jan 1970).

Thegmtime() andiocaltime() functions can be used to get a more friendly representafitreo
time, either in Greenwich Mean Time or the local time zonehBman be used in either scalar or list
context.

To convert date and time information into a human-readahlegsyou may want to ussirftime
from theposix module:

use POSIX gw(strftime);

Current time in YYYY-MM-DD format:
print strftime("%Y-%m-%d", localtime());

For information on what the format string identifiers meamsult your system’stritime()
documentation. For exampfean strftime on a *nix system. Also read theftime ~ documentation
in perldoc POSIX for portability considerations.

Perl Training Australia (http://perltraining.com.au/) 49

Chapter 7. Operators and functions

Exercises

1. Create a hash andiete an element. Usexists to test if hash keys do or do not exist.

(Answer:exercises/answers/hash2.pl)
2. Print the list of keys in a hash. (Answekercises/answers/hash2.pl)
3. Print out the date for a week ago (the answerisicises/answers/lastweek.pl)

4. Readperldoc -f localtime.

Chapter summary

50

- Perl operators and functions can be used to manipulate ddtpeaform other necessary tasks.
- The difference between operators and functions is blumedt can behave in either way.

- Functions can accept arguments of various kinds.

- Functions may return any data type.

- Return values may differ depending on whether a functiomlied in scalar or list context.

Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

In this

What |

chapter...

In this chapter, we look at Perl’s various conditional comsts and how they can be used to provide
flow control to our Perl programs. We also learn about Peréaning of truth and how to test for
truth in various ways.

s a conditional statement?

A conditional statement is one which allows us to test ththtafi some condition. For instance, we
might say "If the ticket price is less than ten dollars..."\thile there are still tickets left..."

You've almost certainly seen conditional statements irpgitogramming languages, but Perl has a
conditional that you probably haven't seen before. @ifiess(condition) iS exactly the same as
if((condition)) buteasier to read.

Perl's conditional statements are listed and explained on pages 111-115 (pages 95-106, 2nd
Ed) of the Camel book.

What is truth?

The if

Conditional statements invariably test whether sometlsitigie or not. Perl thinks something is true
if it doesn’t evaluate to the number zer),(the string containing a single zero'(), an empty string
("), or the undefined value.

false (" would also be false)

42 # true

0 # false

"0" # false

"00" # true, only a single zero is considered false

"wibble" # true

$new_variable # false (if we haven't set it to anything, it's undefined)

The Camel book discusses Perl’s idea of truth on pages 29-30 (pages 20-21, 2nd Ed)

including some odd cases.

conditional construct

A very common conditional construct is to say: if this thisgriue do something special, otherwise
don't. Perl’sit construct allows us to do exactly that.

51
Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

Theif construct looks like this:

if (conditional statement) {
BLOCK

} elsif (conditional statement) {
BLOCK

} else {
BLOCK

}

Both theelsit andelse parts of the above are optional, and of course you can have than one
elsif . Note thatelsif is also spelled differently to other languages’ equivaentC programmers
should take especial note to not use if

The parentheses around the conditional are mandatorye éiseacurly braces. Perl does not allow
dangling statements as does C.

If you're testing whether something is false, you can usddbeally opposite constructpless .

unless (conditional statement) {
BLOCK

}

Theunless construct is identical to using not $condition) . This may be best illustrated by
use of an example:

make sure we have apples # make sure we have apples

if(not $I_have_apples) { unless($I_have_apples) {
go_buy_apples(); go_buy_apples();

} }

now that we have apples... # now that we have apples...

make_apple_pie(); make_apple_pie();

There is no such thing as aBunless (thank goodness!), and if you find yourself usingeasa
with unless then you should probably have written it asiartest in the first place.

There’s also a shorthand, and more English-like, way tafusandunless :

print "We have apples\n" if $apples;
print "We have no bananas\n" unless $bananas;

So what is a BLOCK?

A block is a hunk of code within curly braces or a file. Blocks ¢te nested inside larger blocks. The
simplest (useful) block is a single statement, for instance

{

print "Hello world!\n";

}

Sometimes you’'ll want several statements to be groupedheg®gically so you can enclose them
in a block. A block can be executed either in response to samditton being met (such as after an
if statement), or as an independent chunk of code that may be gimame.

Blocks always have curly brackets énd}) around them. In C and Java, curly brackets are optional
in some cases - not so in Perl. Note that it's perfectly aat#ptto have a block that is not part a
condition or subroutine (called a naked block). We'll seesa for such blocks in our section on

scope

52 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

{

my $fruit = "apple";

my $howmany = 32;

print "I'd like to buy $howmany ${fruit}s\n";
}

You'll notice that the body of the block is indented from thadkets; this is to improve readability.
Make a habit of doing it. You'll also recognise our usesgiuit} from our discussion on variable
interpolation earlier.

The Camel book refers to blocks with curly braces around them as BLOCKSs (in capitals). It

discusses them on page 111 onwards (97 onwards, 2nd Ed).

Scope

Something that needs mentioning again at this point is theeyt of variable scoping. You will
recall that we use they function to declare variables when we're using ¢hiet pragma. Theny
also scopes the variables so that they are local tothent block which means that these variables
areonly visible inside that block.

use strict;

my $a = "foo";

{ # start a new block
my $a = "bar"; # a new $a
print "$a\n"; # prints bar

}

print $a; # prints foo

We say that thaa of the inside bloclshadowghesa in the outside block. This is true of all blocks:

my $a = 0;

my $b = 0;

unless($a) {
$a = 5; # changes $a
my $b = 5; # shadows $b (a new $b)
print "$a, $b\n"; # prints "5, 5"

}

print "$a, $b\n"; # prints "5, 0"

@Temporary changes to Perl’s special variables can be performed by using local . It's not possible
to use local on a lexical variable declared with my.

$ = "fish and chips and vinegar";

print $_; # prints "fish and chips and vinegar"

f local $_ = $_; # allows changes to $_ which only affect this blo ck
$_ .= " and a pepper pot ";
print $_; # prints "fish and chips and vinegar and a pepper pot

$_ reverts back to previous version
print $_; # prints "fish and chips and vinegar"

Perl Training Australia (http://perltraining.com.au/) 53

Chapter 8. Conditional constructs

local ising and then changing our variables changes their value not only for the the block we’ve
local ised them within, but for every function and subroutine that is called from within that block.
As this may not be what you want, it is good practice to keep the scope of our localised variable
as small as possible.

Comparison operators

We can compare things, and find out whether our comparistenséant is true or not. The operators
we use for this are:

Table 8-1. Numerical comparison operators

Operator Example Meaning
== $a == $b Equality (same as in C and other
C-like languages)
1= $a = $b Inequality (again, C-like)
$a < $b Less than
$a > $b Greater than
<= $a <= $b Less than or equal to
>= $a >= $b Greater than or equal to
<=> $a <=> $b Star-ship operator, see below

The final numerical comparison operator (commonly calledstiarship operator as it looks
somewhat like an ASCII starship) returns -1, 0, or 1 depaendimwhether the left argument is
numerically less than, equal to, or greater than the rightraent. This is commonly seen in use
with sorting functions.

If we’re comparing strings, we use a slightly different setomparison operators, as follows:

Table 8-2. String comparison operators

Operator Example Meaning

eq $a eq $b Equality

ne $a ne $b Inequality

It $a It $b Less than (in "asciibetical” order)
gt $a gt $b Greater than

le $a le $b Less than or equal to

ge $a ge $b Greater than or equal to

cmp $a cmp $b String equivalent ok=>

Some examples:

69 > 42; # true

"0" =3 - 3, # true

‘apple’ gt 'banana’; # false - apple is asciibetically befor e
banana

54 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

1 + 2 == "3com"; # true - 3com is evaluated in numeric
context because we used == not eq [*x
0 == "fred"; # true - fred in a numeric context is O [*x
0 eq "fred"; # false
0 eq 00; # true - both are "0" in string context.
0 eq "00% # false - string comparison. "0" and
"00" are different strings.
undef; # false - undefined is always false.

The examples above marked wijth] will behave as described but give the following warnings if
you use thew flag:

Argument "3com" isn’t numeric in numeric eq (==) at conditio ns.pl line 5.
Argument "fred" isn’t numeric in numeric eq (==) at conditio ns.pl line 7.

This occurs because although Perl is happy to attempt toagas®ur data into something
appropriate for the expression, the fact that it needs taduoay indicate an error.

Assigningundef to a variable name undefines it again, as does usingntlee function with the
variable’s name as its argument.

my $foo = "bar";

$foo = undef; # makes $foo undefined
undef($foo); # same as above
Exercises

1. Write a program which takes a value from the command limecammpares it using an
statement as follows:

a. If the number is less than 3, print "Too small"

b. If the number is greater than 7, print "Too big"

c. Otherwise, print "Just right"
Seeexercises/answersl/if.pl for an answer.

2. Set two variables to your first and last names. Usie astatement to print out whichever of
them comes first in the alphabet (answesiercises/answers/comp_names.pl).

Existence and definitiveness

We can also check whether things are defined (something rsediefihen it has had a value assigned
to it), or whether an element of a hash exists.

To find out if something is defined, use Petsined function. The defined function is necessary to
distinguish between a value that is false because it is umetbfind a value that is false but defined,
such a® (zero) or (the empty string).

my $skippy; # S$skippy is undefined and false
$skippy = "bush kangaroo"; # true and defined
print "true" if $skippy; # prints true

print "defined" if defined($skippy); # prints defined

Perl Training Australia (http://perltraining.com.au/) 55

Chapter 8. Conditional constructs

$skippy = " # false and defined
print "true" if $skippy; # does not print
print "defined" if defined($skippy); # prints defined

$skippy = undef; # false and undefined

print "true" if $skippy; # does not print
print "defined" if defined($skippy); # does not print

It's possible for a hash to have an element that is assoaithcan undefined value. In this case the
elementexistsbut is notdefined To find out if an element of a hash exists, usedhss function:

my %miscellany = (

"apple" = "red", # exists, defined, true

"howmany" = 0, # exists, defined, false
"name" => # exists, defined, false
"koala" => undef, # exists, undefined, false

)

if(exists $miscellany{"Blinky Bill"}) {
print "Blinky Bill exists.\n"; # Does NOT get printed

}

if (exists $miscellany{koala}) {
print "koala exists\n"; # This IS printed

}

if (defined $miscellany{koala}) {
print "koala is defined\n"; # Does NOT get printed

}

The defined function is described in the Camel book on page 697 (page 155, 2nd Ed), and
also by perldoc -f defined .

The exists function is described in the Camel book on page 710 (page 164, 2nd Ed), and also
by perldoc -f exists .

Exercise

The following exercise uses the hash below:

my %num_of cars = (

Bob = 1, # Bob has 1 car

Jane = 2, # Jane has 2 cars

Jack = 0, # Jack doesn't own a car

Paul => undef, # Paul didn't answer the question

);

Andrew isn't our friend (he’'s not in the hash)

You can find a starting hash éxercises/friends.pl

1. Write a program which takes the name of a friend on the comaitiae and returns the number
of cars that friend has. You'll want to produce different seges for the following cases: the

56 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

friend has 1 or more cars, the friend has no car, the friend'tichswer the question, the given
person isn’t our friend.

Remember we want to be able to add more friends into our h#sh wthout having to change
the code. An answer can be founceiercises/answers/exists.pl

Boolean logic operators

Boolean logic operators can be used to combine two or motes¢ements, either in a conditional
test or elsewhere.

These operators come in two flavours: line noise, and Enddisth do similar things but have
different precedence. This sometimes causes great confusin doubt, use parentheses to force
evaluation order.

@Alright, if you insist: and and or operators have very low precedence (i.e. they will be evaluated
after all the other operators in the condition) whereas &&and || have quite high precedence and
may require parentheses in the condition to make it clear which parts of the statement are to be
evaluated first.

Table 8-3. Boolean logic operators

English-like C-style Example Result
and 8& $a && $b True if bothga andsb
$a and $b are true; acts ogsa then
if $a is true, goes on to
act onsb.
or Il $a || $b True if either ofsa and
$a or $b $b are true; acts ogsa

then ifsa is false, goes
on to act orsb.

not I | $a True if $a is false. Falsg
not $a if $a is true.

Here’s how you can use them to combine conditions in tests:

my $a = 1,

my $b = 2;

I $a # False

not $a # False

$a == 1 and $b == # True

$a == 1 or $b == 5 # True

$a == 2 or $b == 5 # False

($a == 1 and $b == 5) or $b == 2 # True (parenthesised expression

Perl Training Australia (http://perltraining.com.au/) 57

Chapter 8. Conditional constructs

Logic operators and short circuiting

These operators aren'’t just for combining tests in cond#fictatements --- they can be used to
combine other statements as well. An example of this is gli@uit operations. When Perl sees a
true value to the left of a logical operator (eithey oror) it short circuitsby not evaluating the
right hand side, because the statement is already true. Réesees a false value to the left of a
logicaland operator it short circuits by not evaluating the right haitlé sbhecause the statement is
already false. This is fantastic because it means we camimgfston the right hand side of these
operators that we only want to be executed under certainitbonsl

Here’s a real, working example of thie short circuit operator:

open(INFILE, "< input.txt") || die("Can’'t open input file: $1");
Or
open(INFILE, "< input.txt") or die("Can’t open input file: $1);

The open() function can be found on page 747 (page 191, 2nd Ed) of the Camel book, if you

want to look at how it works. It's also described in perldoc -f open .

The die() function can be found on page 700 (page 157, 2nd Ed) of the Camel book. Also see
perldoc -f die .

The&s& operator is less commonly used outside of conditional testsis still very useful. Its
meaning is this: if the first operand returns true, the seealiédlso happen. As soon as you get a
false value returned, the expression stops evaluating.

($day eq ’'Friday’) && print "Have a good weekend\n";

The typing saved by the above example is not necessarilyhwiogtloss in readability, especially as
it could also have been written:

print "Have a good weekend\n" if $day eq 'Friday’;
if ($day eq 'Friday’) {
print "Have a good weekend!\n";

}

...or any of a dozen other ways. That's right, there’s moaa tbne way to do it.

The most common usage of the short circuit operators, espefi (oror) is to trap and handle
errors, such as when opening files or interacting with theaipey system.

Short circuit operators are covered from page 102 (page 89, 2nd Ed) of the Camel book.

Boolean assignment

Boolean logic operators are great in conditional statemand as short circuit operators but they can
also be used in assignment. Consider the following:

$a [|= 0; # Which is short hand for $a = $a || O;

58 Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

What does this do for us? It saysgi is not true (that is; ifsa is any ofo (zero),™ (the empty
string) orundef (the undefined value)), set it to beAfter this statement we know for certain tisat
is both defined and valid, even if it isn’t true.

Loop conditional constructs

Often when coding you wish to do the same task a number of tif@sexample for every line of a
file, or while there is input from the user or for every elemefan array. This is why there are
looping constructs.

while loops
We can repeat a block while a given condition is true:

while (conditional statement) {
BLOCK

}

if $hunger <= 0 to start with, this will never start.
my $hunger = 5;
while ($hunger > 0) {
print "Feed mel\n";
$hunger--;
}

The logical opposite of this is the "until" construct:

$full = -5;

until ($full > 0) {
print "Feed mel\n";
$Sfull++;

}

Like theif andunless constructswhile anduntii also have their shorthand forms:

print "Feed mel\n" while ($hunger-- > 0);
print "Feed mel\n" until ($full++ > 0);

Like the shorthand conditionals, these forms may only hasiagle statement on the left hand side.

for and foreach
Perl has dor construct identical to C and Java:
for (my $count = 0; $count <= $enough; $count++) {

print "Had enough?\n";

}

However, since we often want to loop through the elements afreay, we have a special "shortcut"
looping construct calletbreach , which is similar to the construct available in some Unixlshe
Compare the following:

Perl Training Australia (http://perltraining.com.au/) 59

Chapter 8. Conditional constructs

60

using a for loop

for (my $i = 0; $i < @array; $i++) {
print $array[$i] . "\n";

}

using foreach
foreach (@array) {

print "$_\n";
}

You'll notice above that we used the special variableo print each element in our arrayreach
doesn’t have to bind_ to the array elements, you can name your own variable to ssead.

foreach my $value (@array) {
print "$value\n";

}

Naming the variable you want to bind withisreach is often good programming practice, as it can
make your code much more readable. However, there are casgsalowing Perl to bind te_

results in better looking code. We'll see some examplesisfiétter on when we cover regular
expressions.

C When in a foreach loop, the variable representing the current element is the current element,
not just a copy of it. This means that if you change this variable, you change the original. For
example, the following loop will double all the numbers in a list:

foreach (@numbers) {

$_ =8 2
}

foreach(n..m) can be used to automatically generate a list of numbers between n and m

We can loop through hashes easily too, using<tige function to return the keys of a hash as an list
that we can use:

foreach my $month (keys %monthdays) {
print "There are $monthdays{$month} days in $month.\n";
}

foreach constructs may also be used in a trailing form:

print $_ foreach (@array);

Exercises

1. Print out the keys and values for each item, from a hashgusforeach loop (hint: look up the
keys function in your Camel book or ugeerldoc -f keys). A starter can be found in
exercises/loops_starter.pl

Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

2. Use awhile loop to print out a numbered list of the elements in an array
3. Now do it with afor loop
4. Try it with aforeach loop (this is a little harder).

Answers are given iaxercises/answers/loops.pl

Practical uses of whi | e loops: taking input from STDIN

STDIN is the standard input stream for any Unix program. If@gpam is interactive, it will take
input from the user via STDIN. Many Unix programs accept inpom STDIN via pipes and
redirection. For instance, the Ungat utility prints out all the files given to it on the command ljne
but will also print out files redirected to its STDIN:

% cat < hello.pl

Unix also has STDOUT (the standard output) and STDERR (wletes are printed to).

We can get a Perl script to take input from STDIN (standardijpand do things with it by using the
line input operator, which is a set of angle brackets withrthme of a filehandle in between them:

my $user_input = <STDIN>;

The above example takes a single line of input from STDIN. ifipet is terminated by the user
hitting Enter. If we want to repeatedly take input from STDiMe can use the line input operator in a
while loop:

#!/usr/bin/perl -w

while ($_ = <STDIN>) {
do some stuff here, if you want...
print; # remember that print takes $_ as its default argument

}

When Perl sees a simple assignment from a filehandle as tliéioorof a while loop, it
automatically checks that the value is defined rather ttsatjue. This saves us from having to write:

while (defined($_ = <STDIN>)) {

which we'd otherwise have to do.
Input continues to be taken until the end of file charactemimonly written EOF) is encountered.

Conveniently enough, thenile statement can be written more succinctly, because insigiéea or
uniil loop, the line input operator assignsstoby default:

while (<STDIN>) {
print;
}

The above construct is exactly equivalent to our previoasrgxe.

The readline operator also has its own default behavioun swst circumstances we can shorten
the above loop even further:

while (<>) {
print;
}

Perl Training Australia (http://perltraining.com.au/) 61

Chapter 8. Conditional constructs

The <> (diamond) construct is highly magical. It opens and reads fisted on the command line
(from @ARG) or fromSTDIN if no files are listed. This is an incredible useful constithett is well
worth remembering.

As always, there’s more than one way to do it.

Exercises

The above example script (which is available in your direcasexercises/cat.pl) will basically
perform the same function as the Umiat command; that is, print out whatever’s given to it through
STDIN.

You'll have to type some stuff in, line by line. When you'veifihed entering input, h€TRL -D
(a.k.aD) on Unix orCTRL -Z (a.k.a»z) for Windows. This character sequence standefat of
file (EoR which is false. Thus thehile loop will end and any further code will be executed.

1. Try running the script with no arguments.

2. Now try giving it a file by using the shell to redirect its owource code to it:

perl exercises/cat.pl < exercises/cat.pl
This should make it print out its own source code.

3. Since theatpl program uses the diamond construct, it will also process filesented on the
command line. Use it to display the concatenated conterasofiple of other files.

Named blocks

Blocks can be given names, thus:

LINE:
while (<STDIN>) {

}

By convention, the names of blocks are in upper case. The saméd also reflect the type of things
you are iterating over --- in this case, lines of text from 3NID

Breaking out or restarting loops

62

You can change loop flow (to restart or end) by using the fonstiext , last andredo .

LINE:

while (<STDIN>) {
chomp; # remove newline
next LINE if $_ eq ™; # skip blank lines
last LINE if Ic($)) eq 'q; # quit

}

Writing next LINE tells Perl to repeat the block namede from the start. Writingast LINE tells
Perl to jump to the end of the block nameade and continue program execution. By defaight
andiast affect the current smallest loop. In the example above thentismallest loop is the while
loop so the block namaNEe could have been omitted leaving us with:

Perl Training Australia (http://perltraining.com.au/)

Chapter 8. Conditional constructs

while (<STDIN>) {
chomp; # remove newline
next if $ eq " # skip blank lines
last if Ic($_) eq 'q; # quit

}

Named blocks are most useful when we wish to break out of ahégiger up the chain:

LINE:
while (<STDIN>) {
chomp; # remove newline
next if $ eq " # skip blank lines
we split the line into words and check all of them
foreach my $word (split Ns+/,$_) {
last LINE if Ic($word) eq ’'quit’; # quit
}
}

There is another loop flow function namedo . redo allows you to restart the loop at the top
without evaluating the conditional again. This commandasused very often but it useful for
programs which want to lie to themselves about what theyigegeen. For example:

foreach my $file (@files_to_delete) {
print "Are you sure you want to delete $file? [y|n]\n";

my $answer = <STDIN>;
chomp $answer;
$answer = Ic $answer;

if(Janswer eq 'y’) {

unlink $file or warn "Delete failed: $!";
}
elsif(fanswer eq 'n’) {

print "$file not deleted\n";

}

else {
invalid input
redo;

}

}

In this case, had we usedxt the file we were dealing with would have been lost when we
re-evaluated the condition>. Thus the file would be neither deleted, nor reported on adeleted.
redo refers to the innermost enclosing loop by default but can talke a LABEL likenext andiast .

Checkout perldoc -f last , perldoc -f next and perldoc -f redo for information on these

functions.

Practical exercise

Write a program which generates a random integer betweed 1@hand then asks the user to
guess it. Verify that the user’s guess is a number between 1@d before proceeding. If it is not,
tell the user and ask for a new number. If the user guessesghpdr too low, tell them so and ask
again. If the user gets the number correct; terminate the &oal congratulate them. Count how
many guesses it required and report this at the end.

Perl Training Australia (http://perltraining.com.au/) 63

Chapter 8. Conditional constructs

An answer can be found ixercises/answers/guessing_game.pl . Try the exercise first before
looking at the answer.

Chapter summary

64

A block in Perl is a series of statements grouped togetheuly braces. Blocks can be used in
conditional constructs and subroutines.

A conditional construct is one which executes statemergsdan the truth of a condition.

Truth in Perl is determined by testing whether something@INny of: numeric zero, the empty
string, or undefined.

Theif - elsif - else conditional construct can be used to perform certain asti@sed on the
truth of a condition.

Theunless conditional construct is equivalentitmot(...))

Thewnile , for , andforeach constructs can be used to repeat certain statements batieal touth
of a condition.

A common practical use of thenile loop is to read each line of a file.
Blocks may be named using thaME: convention.

You can change execution flow in blocks by usitgt , redo andiast.

Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Subroutines

In this chapter...

In this chapter, we look at subroutines and how they can be tassimplify your code. More
advanced material regarding subroutines and parametgngasan be found in Appendix B.

Introducing subroutines

If you have a long Perl script, you'll probably find that there parts of the script that you want to
break out into subroutines (sometimes called functionshemanguages). In particular, if you have
a section of code which is repeated more than once, it's besbke it a subroutine to save on
maintenance (and, of course, line count).

What is a subroutine?

A subroutine is a set of statements which performs a speagic t

The statements in a subroutine are compiled into a unit weachthen be called from anywhere in
the program. This allows your program to access the sulm@utipeatedly, without the subroutine’s
code having been written more than once.

Subroutines are very much like Perl’s functions, however gan define your own subroutines for
the tasks at hand. We use Pepkmt function to output data, rather than writing output code for
each and every character we wish to output. In a similar waycan write subroutines to allow us to
reuse the same block of code from different parts of our @Enogr

Just like Perl'sorint -~ function can take arguments, so can your subroutines. Tdeglso return
values of any type. If you find yourself repeating a task,dften best to consider what it needs to do
its task, and what information it needs to return, and thaetewour code into a subroutine.

Why use subroutines?

By creating your own subroutines, you are able to reduce ogmietition and improve code
maintainability. For example; rather than writing code¢od an email to the administrator, and a
separate block of code to send an email to a user; you coulBicerthe email sending code into a
single subroutine. Once written, you can then call this sutine with the recipient of the mail and
what you wish to send them. Now if you ever need to change hosvmail is sent, you only need to
change your code in one location.

Subroutines are used:

- to avoid or reduce redundant code,
- to improve maintainability and reduce possibility of egor
- to reduce complexity by breaking complex problems into $enainore simple pieces,

- to improve readability in the program,

65
Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Subroutines

Using subroutines in Perl

For a more comprehensive coverage than we give in this chapter, read perldoc perisub .

A subroutine is basically a little self-contained mini-gram in the form of block which has a name,
and can take arguments and return values:

the general case

sub name {
BLOCK

}

a specific case

sub print_headers {
print "Programming Perl, 2nd ed\n";
print "by\n";
print "Larry Wall et al.\n";

}

Perl subroutines don’t come with declarations as they doam€some other languages. This means
that (usually) you cannot rely on the compiler to verify thati have passed your in your arguments
in the correct order, and to ensure that you haven’'t missgdTduis is an advantage if you wish to be
able to call your subroutine and leave off optional argursdnit it can be surprising at first.

Calling a subroutine

A subroutine can be called in any of the following ways:

print_headers(); # The preferred method.

&print_headers(); # Sometimes necessary.

&print_headers; # An older style (with some dangers).

print_headers; # Ambiguous, can cause problems under stric t.

If (for some reason) you've got a subroutine that clashels arite of Perl’s functions you will need
to prefix your function name witk (ampersand) to be perfectly clear. For examgteit(@array)

if you have your owrsort function, but don’t do that. You should avoid naming yourdtions after
Perl’s built-in functions because it typically causes mawafusion than it's worth. Especially to
whichever poor soul tries to maintain your code.

@Be careful of calling your functions in the form &print_headers; as this can result in a rather
surprising effect. For historical reasons, calling your subroutines prepended with an ampersand
and excluding arguments means that the subroutine is passed with an implicit argument list,
which is everything currently in @_. While, occasionally, this may be intentional, writing
print_headers(@_) will make your code much easier for other people to understand.

66 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Subroutines

@There are other times when you need to use an ampersand on your subroutine name, such as
when a function needs a SUBROUTINE type of parameter, or when making an anonymous
subroutine reference.

Passing arguments to a subroutine

You can pass arguments to a subroutine by including theneipanentheses when you call it. The
arguments end up in a special array caliedvhich is only visible inside the subroutine.

Passing in scalars
The most common variable type passed into a subroutine sctilar.
print_headers("Programming Perl, 2nd ed", "Larry Wall et a 1");

my $fiction_title = "Lord of the Rings";
my $fiction_author = "J.R.R. Tolkein";

print_headers($fiction_title, $fiction_author);

sub print_headers {
my ($title, $author) = @_;
print "$title\n";
print "by\n";
print "$author\n";

}

You can take any number of scalars in as arguments - thelydhal up in@_in the same order you
gave them.

@Inside a subroutine, the shift function will by default shift and return arguments from the start of
@. As such, it's also very common to see code like this:

sub print_headers {
my $title = shift || "Untitled";
my $author = shift || "Anonymous";
print "$title\n
print "by\n
print "$author\n”;

}
One use of this is when you pass a different number of arguments to a function depending on

what you want it to do. Try to avoid shift ing arguments from @_deep down into your subroutine.
Doing this will make it much harder for someone to maintain your code later.

Perl Training Australia (http://perltraining.com.au/) 67

Chapter 9. Subroutines

Passing in arrays and hashes

To pass in a single array or hash to a subroutine, make it tabdiement in your argument list. For
example:

print_headers($title, $author, @publication_dates);

sub print_headers {
my ($title, $author, @dates) = @_;
print "$title\nby\n$author\n";
if(@dates) { # If we were given any publication dates
print "Printed on: @dates";

}
}

Passing in more than one array or hash causes problemssHasause of list flattening. When Perl
sees a number of items in parentheses these are combin@shatng list.

Flatten two lists into one big list and put that in an array
my @biglist = (@listl, @list2);

Flatten (join) two hashes into one big list an put that in a ha sh
my %bighash = (%hashl, %hash2);

Make a nonsense list and put that in an array:
my @nonsense = (%bighash, @listl, @biglist, 1 .. 4);

Thus if we write the following code, we won't get the results want:

my @colours = gw/red blue white green pink/;
my @chosen = gw/red white green/;

print_unchosen(@chosen, @colours);

sub print_unchosen {
my (@chosen, @colours) = @_;

at this point @chosen contains:
(red white green red blue white green pink)
and @colours contains () - the empty list.

}

Once lists have been flattened, Perl is unable to tell whegdistrstopped and the other started.
Thus when we attempt to separaehosen and@colours into their original lists@chosen takes all
the elements and leav@golours empty. This will happen with hashes too.

@We can avoid this problem by using references:
print_unchosen(\@chosen, \@colours);

sub print_unchosen {
my ($chosen, $colours) = @_;

my @chosen
my @colours

@$chosen;
@$colours;

at this point @chosen contains:
(red white green)
and @colours contains (red blue white green pink)

}

however these are beyond the scope of this section.

68 Perl Training Australia (http://perltraining.com.au/)

Chapter 9. Subroutines

References will be covered in more depth later in the course. To learn more about them now
read perldoc perlreftut

Returning values from a subroutine

To return a value from a subroutine, simply userdw@n function.

sub format_headers {
my ($title, $author) = @_;
return "$title\nby\n$author\n\n";

}
sub sum {
my $total = O;
foreach (@_) {
$total = $total + $_;
}
return $total;
}

These return values could be used as follows:

my $header = format_headers("War and Peace", "Leo Tolstoy");
print $header;

my $total = sum(1..100);
print "$total\n";

my $silly_total = sum(S$total, length($header));
print "$silly_total\n";

You can also return lists from your subroutine:

subroutine to return the first three arguments passed to it
sub firstthree {

return @_[0..2];
}

my @three_items = firstthree("x", "y", "z", "a", "b");
sets @three_items to ("x", "y", "z");

alternately:
my ($x, $y, $z) = firstthree(4..10); # set $x = 4, $y = 5, $z = 6

Occasionally you might want to return different information based on the context in which

your subroutine was called. For example localtime ~ returns a human-readable time string when
called in scalar context and a list of time information in list context.

To achieve this you can use the wantarray ~ function. To learn more about this, read pg 827 in the
Camel book (pg 241, 2nd Ed) and perldoc -f wantarray .

Perl Training Australia (http://perltraining.com.au/) 69

Chapter 9. Subroutines

Exercises

1. Write a subroutine (print_first_arg) which prints ouffitst argument.

2. Call your print_first_arg subroutine at least three tifnggour script, giving it different
numbers and types of arguments. For example:

print_first_arg(1..10);
print_first_arg(’a’..’e’);

my ($name, $colour) = ("Bob", "yellow");
print_first_arg($name, $colour);

3. One international foot is 0.3048 metres. Write a subnaufieet_to_metres) that takes a length
in feet, andeturn s the length in metres. Call this subroutine in your code anridwthat it
returns what you expect.

print feet_to_metres(1), "\n"; # Should print 0.3048
print feet_to_metres(2), "\n"; # Should print 0.6096

4. Use aloop to call your feet_to_metres subroutine fortles1gf 1 foot to 10 feet, to display their
equivalent lengths in metres.

5. You have been hired by the mayor’s office to develop a systezontact superheroes. Write a
subroutine that returns a standard letter and which actieggs arguments: a superhero to
contact, the location they are required, and the threatriest combat. Use your subroutine to
generate a letter asking Batman to save Gotham City from dker.J

6. Write a subroutine that takes a list of numbers, and calesland returns their mean (the sum of
all numbers divided by the count of numbers). Use your suiretio calculate the mean of the
numbers 1,3,5,7,11,13,17,19.

You'll find the answers the the abovedrercises/answers/subroutines.pl

Chapter summary

70

« A subroutine is a named block which can be called from anyareyour Perl program.
« Subroutines can accept parameters, which are availabthesgpecial arrag .

- Arrays and hashes should be passed as the last argumentaatiubs. In the case where it is
necessary to pass more than one array or hash to a subrafénences must be used.

- Subroutines can return scalar or list values.

Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions

In this chapter...

In this chapter we begin to explore Perl’s powerful reguiqression capabilities, and use regular
expressions to perform matching and substitution operaiim text.

Regular expressions are a big reason of why so many peopfefeal. One of Perl’s most common
uses is string processing and it excels at that becauselmfiitan support for regular expressions.

Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2, 2nd Ed) of

the Camel book, and further information is available in the online Perl documentation by typing
perldoc perlre .

What are regular expressions?

The easiest way to explain this is by analogy. You will prdigdde familiar with the concept of
matching filenames under DOS and Unix by using wild cardst or /usr/locall = for instance.
When matching filenames, an asterisk can be used to matctuamyan of unknown characters, and
a question mark matches any single character. There aréeatswell-known filename matching
characters.

Regular expressions are similar in that they use speciahctes to match text. The differences are
that more powerful text-matching is possible, and that gt@&special characters is different.

Regular expressions are also known as RESs, regexes, anghsege

Regular expression operators and functions

M/PATTERN/ - the match operator

The most basic regular expression operator is the matchegtorm/PATTERNL/.

- Works ons_ by default.

- In scalar context, returns trug)(if the match succeeds, or false (the empty string) if thechnat
fails.

- Inlist context, returns a list of any parts of the patternatihare enclosed in parentheses. If there
are no parentheses, the entire pattern is treated as ifé& pagenthesised.

« Themis optional if you use slashes as the pattern delimiters.

- If you use themyou can use any delimiter you like instead of the slashes iShiery handy for
matching on strings which contain slashes, for instanactbry names or URLSs.

« Using theii modifier on the end makes it case insensitive.

Perl Training Australia (http://perltraining.com.au/) 71

Chapter 10. Regular expressions

72

while (<>) {

print if m/fool; # prints if a line contains "foo"

print if m/fooli; # prints if a line contains "foo", "FOO", et c
print if /fooli; # exactly the same; the m is optional

print if m#foo#i; # the same again, using different delimite rs

print if /http:VW/; # prints if a line contains "http://"

suffers from "leaning-toothpick-syndrome".
print if m!http:/!; # using ! as an alternative delimiter
print if m{http://}; # using {} as delimiters

S/IPATTERN/REPLACEMENT/ - the substitution operator

This is the substitution operator, and can be used to findabidth matches a pattern and replace it
with something else.

- Works ons_ by default.
- In scalar context, returns the number of matches found gridaed.

- In list context, behaves the same as in scalar context anchesthe number of matches found and
replaced (a cause of more than one mistake...).

- You can use any delimiter you want, the same asrheoperator.

- Using/g on the end of it matches globally, otherwise matches (anldcep) only the first
instance of the pattern.

- Using theii modifier makes it case insensitive.
fix some misspelled text

while (<>) {

s/freind/friend/g; # Correct freind to friend on entire lin e.
s/teh/thelg;
sljsut/just/g;
s/pual/Paullig; # Correct (case insensitive) all occurren ces
of "pual" (or "Pual" or "PuAl" etc)
print;
}
Exercises

The above example can be found:karcises/spelicheck.pl

1. Run the spelling check script over thercises/spellcheck.xt file.

2. There are a few spelling errors remaining. Change yowgrara to handle them as well. An
answer can be found ixercises/answers/spelicheck.pl

Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions

Binding operators

If we want to usen// ors/// to operate on something other thanwe need to use binding
operators to bind the match to another string.

Table 10-1. Binding operators

Operator Meaning
=~ True if the pattern matches
I~ True if the pattern doesn’t match

print "Please enter your homepage URL: "
my $url = <STDIN>;

if(Surl '~ /~http:/) {
print "Doesn’t look like a http URL.\n";
}
if ($url =~ /geocities/) {
print "Ahhh, | see you have a geocities homepage!\n";
}
my $string = "The act sat on the mta";
$string =~ s/act/cat/;

$string =~ s/mta/mat/;

print $string; # prints: "The cat sat on the mat";

Easy modifiers

There are several modifiers for regular expressions. We'ga swo already.

Table 10-2. Regexp modifiers

Modifier Meaning

[Make match/substitute match case insensitive

g Make substitute global (all occurrences are
changed)

You can find out about the other modifiers by reading perldoc perlre .

Meta characters

The special characters we use in regular expressions ded nadta charactersecause they are
characters that describe other characters.

Perl Training Australia (http://perltraining.com.au/) 73

Chapter 10. Regular expressions

Some easy meta characters

Table 10-3. Regular expression meta characters

Meta character(s) Matches...
Start of string

$ End of string
IAny single character except

n Newline

t Matches a tab

s IAny whitespace character, such as space, tab| or
newline

S IAny non-whitespace character

d Any digit (0 to 9)

D Any non-digit

w Any "word" character - alphanumeric plus
underscore ()

IAny non-word character

b A word break - the zero-length point between a
word character (as defined above) and a non-word
character.

B /A non-word break - anything other than a word
break.

Any character that isn’'t a meta character just matched.itégbu want to match a character that's
normally a meta character, you can escape it by precedinightalackslash.

These and other meta characters are all outlined in chapter 5 (chapter 2, 2nd Ed) of the

Camel book and in the perre manpage - type perldoc perlre to read it.

C It's possible to use the /m and /s modifiers to change the behaviour of the first three meta
characters (», $, and .) in the table above. These modifiers are covered in more detail later in the
course.

@Under newer versions of Perl, the definitions of spaces, words, and other characters is
locale-dependent. Usually Perl ignores the current locale unless you ask it to do otherwise, so if
you don’t know what's meant by locale, then don’t worry.

74 Perl Training Australia (http://perltraining.com.au/)

Some quick examples:

Chapter 10. Regular expressions

Perl regular expressions are often found within slashes

[cat/ #
#
["cat/ #
Nscat\s/ #
#
N\bcat\b/

H oH R

we can interpolate variables just like in strings:

my $animal = "dog"

/$animal/ #

/$animal$/ #

A$\d\.\d\d/ #
#
#
#
#

Quantifiers

matches the three characters
¢, &, and t in that order.

matches c, a, t at start of line

matches c, a, t with spaces on
either side

Same as above, but won't
include the spaces in the text
it matches. Also matches if
cat is at the very start or
very end of a string.

we set up a scalar variable

matches d, o, g
matches d, o, g at end of line

matches a dollar sign, then a
digit, then a dot, then
another digit, then another
digit, eg $9.99

Careful! Also matches $9.9999

What if, in our last example, we'd wanted to say "Match a dottaen any number of digits, then a
dot, then only two more digits"? What we need are quantifiers.

Table 10-4. Regular expression quantifiers

Quantifier Meaning

? Oor1l

& 0 or more

+ 1 or more

{n} match exactly n times

.} match n or more times

{n,m} match between n and m times

Here are some examples to show you how they all work:

IMI\.? Fenwick/;
/camel. = perll/;
same line.

Matches "Mr. Fenwick" or "Mr Fenwick"
Matches "camel" before "perl" in the

Nw+/; # One or more word characters.
/x{1,10}/; # 1-10 occurrences of the letter "x".

Perl Training Australia (http://perltraining.com.au/)

75

Chapter 10. Regular expressions

Exercises

For these exercises you may find using the following strectiseful:

while(<>) {
chomp;

print "$_ matches!\n" if (/PATTERN/); # put your regexp here
}

This will allow you to specify test files on the command linecteeck against, or to provide input via
STDIN. Hit CTRL -D to finish entering input via STDIN. (Use the key combinat@®fiRL -Z on
Windows).

You can find the above snippet iexercises/regexploop.pl

1. Earlier we mentioned writing a regular expression forahetg a price. Write one which
matches a dollar sign, any number of digits, a dot and theatlgxavo more digits.

Make sure you're happy with its performance with test caikesthe following:12.34 ,
$111.223 , $.24 .

2. Write a regular expression to match the word "colour” wither British or American spellings
(Americans spell it "color")?

3. How can we match any four-letter word?

Seeexercises/answers/regexp.pl for answers.

Grouping techniques

76

Let's say we want to match any lower case charastematches both upper case and lower case so
it won't do what we need. What we need here is the ability toofmany characters ingroup.

Character classes

A character class can be used to find a single character thehesaany one of a given set of
characters.

Let's say you're looking for occurrences of the word "gray'téxt, then remember that the
American spelling is "gray". The way we can do this is by usithgracter classes. Character classes
are specified using square brackets, thigaly/

We can also use character sequences by saying things-ike or [0-9] . The sequencas andw
can easily be expressed as character clagsgs: and[a-zA-z0-9] respectively.

Inside a character class some characters take on speciaingeaFor example, if the first character
is a caret, then the list is negated. That meansjthat is the same a® --- that is, it matches any
non-digit character.

Here are some of the special rules that apply inside charaeteses.

« ~ at the start of a character class negates the characterreltss than specifying the start of a
line.

Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions
- - specifies a range of characters. If you wish to match a literainust be either the first or the
last character in the class.

«$.(0{ = +andother meta characters taken literally.

Exercises

Your instructor will help you do the following exercises agraup.

1. How would we find any word starting with a letter in the firsiffof the alphabet, or with X, Y,
orZ?

2. What regular expression could be used for any word thetsstath lettersotherthan those
listed in the previous example.

3. There’s almost certainly a problem with the regular egpi@n we've just created - can you see
what it might be?

Alternation

The problem with character classes is that they only matelcharacter. What if we wanted to
match any of a set of longer strings, like a set of words?

The way we do this is to use the pipe sympdbr alternation:

[rabbit|chicken|dog/ # matches any of our pets

&
The pipe symbol (also called vertical bar) is often found on the same key as \ .

However this will match a number of things we might not intértd match. For example:

- rabbiting

« chickenhawk

- hotdog

We need to specify that we want to only match the word if it'sadme by itself.

Now we come up against another problem. If we write sometlikeg

/~rabbit|chicken|dog$/

to match any of our pets on a line by itself, it won’t work quite we expect. What this actually says
is match a string that:

- starts with the string "rabbit" or
+ has the string "chicken" in it or
- ends with the string "dog"

This will still match the three incorrect words above, whismot what we intended. To fix this, we
enclose our alternation in round brackets:

Perl Training Australia (http://perltraining.com.au/) 77

Chapter 10. Regular expressions
/~(rabbit|chicken|dog)$/

Finally, we will now only match any of our pets on a line, byeifs

Alternation can be used for many things including selectiagders from emails for printing out:
a simple matching program to get some email headers and prin t them out

while (<>) {
print if /~(From|Subject|Date):\s/;
}

The above email example can be foun@sisrcises/mailhdr.pl

The concept of atoms

Round brackets bring us neatly into the concept of atomswidrd "atom" derives from the Greek
atomosmeaning "indivisible" (little did they know!). We use it toean "something that is a chunk of
regular expression in its own right".

Atoms can be arbitrarily created by simply wrapping thingsaund brackets --- handy for
indicating grouping, using quantifiers for the whole grotiprace, and for indicating which bit(s) of
a matching function should be the returned value.

In the example used earlier, there were three atoms:

1. start of line
2. rabbit or chicken or dog
3. end of line
How many atoms were there in our dollar prices example ea@rlie

Atomic groupings can have quantifiers attached to them.ristance:

match four words (without punctuation)
/(\b\w+\s =){4}/;

match three or more words starting with "a" in a row
eg "all angry animals"
I(\ba\w+\s *){3,}/;

match a consonant followed by a vowel twice in a row
eg "tutu" or "tofu"
/([N\W\d_aeiou][aeiou]){2}/;

Exercises

1. Determine whether your name appears in a string (an aissiwer
exercises/answers/namere.pl).

2. What pattern could be used to match a blank line? (Answer:
exercises/answers/blanklinere.pl)

78 Perl Training Australia (http://perltraining.com.au/)

Chapter 10. Regular expressions

3. Remove footnote references (like [1]) from some text éserises/footnote.txt for some
sample text, andxercises/answers/footnote.pl for an answer). (Hint: have a look at the
footnote text to determine the forms footnotes can take).

4. Write a script to search a file for any of the names "Yassafait, "Boris Yeltsin" or "Paul
Keating". Print out any lines which contain these names. ¢@ufind a file including these
names and others bxercises/famous_people.txt . (Answer:
exercises/answers/namesre.pl)

5. What pattern could be used to match any of: Elvis Presleis Bron Presley, Elvis A. Presley,
Elvis Aaron Presley. You can find a test filedxercises/elvis.txt . (Answer:
exercises/answers/elvisre.pl)

6. What pattern could be used to match an IP address such.a68.53.124 , where each part of
the address is a number from 0 to 2557 (Answdtcises/answers/ipre.pl)

Chapter summary

« Regular expressions are used to perform matches and stibstton strings.

- Regular expressions can include meta-characters (chesacith a special meaning, which
describe sets of other characters) and quantifiers.

- Character classes can be used to specify any single instéacet of characters.
« Alternation may be used to specify any of a set of sub-exjmess

- The matching operator is/PATTERN/ and acts ors_ by default.

- The substitution operator &PATTERN/REPLACEMENT/and acts ois_ by default.

- Matches and substitutions can be performed on strings tithas_ by using the=~ (and!~)
binding operator.

Perl Training Australia (http://perltraining.com.au/) 79

Chapter 10. Regular expressions

80 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data
structures

In this chapter...

In this chapter, we look at Perl’s powerful reference syratag how it can be used to implement
complex data structures such as multi-dimensional listshis of hashes, and more.

Assumed knowledge

It is assumed that you have a good understanding of Perbstgpes: scalars, arrays, and hashes.
Prior experience with languages which use pointers oreefas is helpful, but not required.

Introduction to references

Perl’s basic data type is theealar. Arrays and hashes are made up of scalars, in one- or
two-dimensional lists. It is not possible for an array orthasbe a member of another array or hash
under normal circumstances.

However, there is one thing about an array or hash which iaisicenature -- its memory address.
This memory address can be used as an item in an array onlistha data extracted by looking at
what's stored at that address. This is what a reference is.

The following sources also provide useful and comprehensive information about references:
» Chapter 8 (chapter 4, 2nd Ed) of the Camel book, and in perldoc perlref .
« Chapter 1 of Advanced Perl Programming (O’Reilly’s Panther book).

Uses for references

There are three main uses for Perl references.

Creating complex data structures

Perl references can be used to create complex data strsidturénstance hashes of arrays, arrays of
hashes, hashes of hashes, and more.

Perl Training Australia (http://perltraining.com.au/) 81

Chapter 11. References and complex data structures

Passing arrays and hashes to subroutines and functions

Since all arguments to subroutines are flattened to a ligtaléss, it is not possible to use two arrays
as arguments and have them retain their individual idestiti

my @al
my @a2

= gqw(a b c);
= qw(d e f);

printargs(@al, @a?2);

sub printargs {
print "@_\n";
}

The above example will printoatb c d e f .

References can be used in these circumstances to keep amchjashes passed as arguments
separate.

Object oriented Perl

References are used extensively in object oriented PedctnPerl objectare references to data
structures.

Creating and dereferencing references

82

To create a reference to a scalar, array or hash, we prefiaite nvith a backslash:

my $scalar = "This is a scalar";
my @array = qw(a b c);
my %hash = (

'sky’ = > ‘blue’,
‘apple’ = > red’,
‘grass’ = > ‘green’,

)

my $scalar_ref = \$scalar;
my S$array_ref = \@array;
my $hash_ref = \%hash;

Note that all references are scalars, because they corsaigla item of information: the memory
address of the actual data. This is what a reference looksflijou print it out:

print $scalar_ref; # prints SCALAR(0x80c697c)
print $array_ref; # prints ARRAY(0x80c6988)
print $hash_ref; # prints HASH(0x80c6988)

You can find out whether a scalar is a reference or not by ubmgff) function, which returns a
string indicating the type of reference, or undef if the ac#d not a reference.

print ref($scalar_ref); # prints SCALAR
print ref($array_ref); # prints ARRAY
print ref($hash_ref); # prints HASH

Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data structures

The ref() function is documented on page 773 (page 204, 2nd Ed) of the Camel book or in

perldoc -f ref .

Dereferencing (getting at the actual data that a refereaireggoto) is achieved by prepending the
appropriate sigil to the name of the reference. For instahee have a hash reference
$hash_reference ~ we can dereference it by adding a percentage sighash_reference

my $new_scalar = $$scalar_ref;

my @new_array = @$array_ref;

my %new_hash = %$hash_ref;

Here’s one way to access array elements or slices, and rexslets:

print $$array_ref[0]; # prints the first element of the arra y
referenced by S$array_ref: a

print @$array_ref[1,2]; # prints an array slice: b, c

print $$hash_ref{'sky’}; # prints a hash element’s value: b lue

The other way to access the value that a reference pointsdaige the "arrow" notation. This
notation is usually considered to be better Perl style tharohe shown above, which can have
precedence problems and is less visually clean.

print $array_ref- >[0]; # prints the first element of the array
referenced by S$array_ref: a
print $hash_ref- >{'sky'}; # prints a hash element’s value: blue

The notation here is exactly the same as selecting elententsain array or hash, except that an
arrow is inserted between the variable name and the elemégtch. So wherefoo[1] gets the first
(ie, position 2) element from the arrafoo, $foo- >[1] gets the first element from the array pointed
to by the referencsgfoo .

C It's not possible to get an array or hash slice using arrow notation.

Taking an array slice of a single element from an array reference does not result in a warning
from Perl, although it's certainly not recommended. Perl does however try to be helpful in this
case and returns the scalar referred to by the array slice, rather than the length of the array slice
which would be 1.

my $value = @$array_ref[0]; # Oops, this should be $$array_r ef[0];
print $value; # Prints 'a’ as desired but is not obvious
Exercises

1. Create an array calleglfriends , and populate it with the name of some of your friends.

2. Create a reference to your array calde@dnds_ref . Using this reference, print the names of
three of your friends.

Perl Training Australia (http://perltraining.com.au/) 83

Chapter 11. References and complex data structures

Assigning through references

Assigning values to the underlying array or hash througtiexeace is much the same as accessing
the value:

my @trees = gw/lemon orange grapefruit/;
my $tree_ref = \@trees;

$tree_ref->[3] = 'mandarin’;
print "@trees"; # prints "lemon orange grapefruit mandarin

my %fruit = (
kumquat => "sour",
orange => "sweet",
lemon => "sour",
mandarin => "sweet"

)
my $fruit_ref = \%fruit;

$fruit_ref->{grapefruit} = "sour and sweet";

Passing multiple arrays/hashes as arguments
When we pass multiple arrays to a subroutine they are flatteneto form one large array.

my @colours = gw/red blue white green pink/;
my @chosen = qw/red white green/;

print_unchosen(@chosen, @colours);

sub print_unchosen {
my (@chosen, @colours) = @_;

at this point @chosen contains:
(red white green red blue white green pink)
and @colours contains () - the empty list.

}
If we want to keep them separate, we need to pass in referemtfesarrays instead:
ref_print_unchosen(\@chosen, \@colours);

sub ref_print_unchosen {
my ($chosen_ref, $colours_ref) = @_;
print "Chosen list:\n";
foreach (@%$chosen_ref) {
print "$_\n";
}
print "Colour list:\n";
foreach (@$%colours_ref) {
print "$_\n";
}
}

When we pass references into a subroutine we're allowintgstifaroutine full access to the structure
that the reference refers to. All changes that the subreutiakes to that structure will remain after

84 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data structures

the subroutine has returned. If you wish to make a copy oftituetsire that the reference refers to
and modify that locally, you can do the following:

sub ref_print_unchosen {
my ($chosen_ref, $colours_ref) = @_;

my @chosen = @$chosen_ref; # this @chosen is now a copy
my @colours = @$colours_ref; # this @colours is now a copy

@The above paragraph discusses a concept that is often referred to as call by reference. Typically
when we call Perl subroutines we consider them to be called by value. Technically, however, this
is incorrect.

In the case where we pass scalars into a subroutine, we usually shit them from @_or we copy
the contents from @_into another list. However if we instead modify the contents of @_directly we
will actually be modifying the contents of the variables given to the subroutine.

We don’t recommend this practice, however, as it makes your code much harder for other
people to maintain. It's much better to do something like the following:

($x, By) = modify($x, $y);

If you do use call by reference be careful, as it's a fatal error to attempt to modify a read-only
value, such as a literal string.

Anonymous data structures

We can use anonymous data structures to create complextdatages without having to declare
many temporary variables. Anonymous arrays are createdibg square brackets instead of round
ones. Anonymous hashes use curly braces instead of rousd one

the old two-step way:
my @array = qw(a b c d);
my S$array_ref = \@array;
if we get rid of $array_ref, @array will still hang round usi ng up
memory. Here’'s how we do it without the intermediate step, b y
creating an anonymous array:
my $array_ref = ['a’, 'b’, 'c’, 'd7J;
look, we can still use qw() too...
my $array_ref = [gw(a b ¢ d)];
more useful yet, we can put these anon arrays straight into a hash:
my %transport = (
‘cars’ = > [qw(toyota ford holden porsche)],

‘planes’ > [qw(boeing harrier)],
'boats’ > [qw(clipper skiff dinghy)],

):

The same technique can be used to create anonymous hashes:

Perl Training Australia (http://perltraining.com.au/) 85

Chapter 11. References and complex data structures

The old, two-step way:
my %hash = (

a => 1,
b = 2,
c => 3

)
my $hash_ref = \%hash;

the quicker way, with an anonymous hash:

my $hash_ref = {
a => 1,
b => 2,
c = 3

h
Data is pulled out of an anonymous data structure using ttogvarotation:

print $hash_ref->{a}; # prints "1";

Exercise

1. Change your previous program to initialigends_ref ~ using an anonymous array
constructor. You should no longer need your origi@alends array. Test that your program
still works.

Complex data structures

You can find more about complex data structures in Appendix C and also by reading both

perldoc perldsc and perldoc perllol .

References are most often used to create complex datausesicbince references are scalars, they
can be used as values in both hashes and arrays. This makssililp to create both deep and
complex multi-dimensional data structures. These areredvmore deeply in Appendix C.

The use of references in data structures allows you to cezedgs of arrays, arrays of hashes, hashes
of arrays and hashes of hashes. We saw an example of a hasaysfiarthe previous section. Here
is an example of an array of hashes:

my %alice = (
name => "Alice Jane",
age => 34,
employeenumber => 12003,

)

my %bob = (
name => "Bob Jane",
age => 32,

employeenumber => 12345,

86 Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data structures

my @employees = (
\%alice,
\%bob,
)i
to print out Alice’s employee number:

print $employees[0]->{employeenumber};

Or, to use anonymous data structures
my @employees2 = (
{

name => "Alice Jane",
age => 34,
employeenumber => 12003,

name => "Bob Jane",
age => 32,
employeenumber => 12345,

):

to print out Bob's age:
print $employees2[1]->{age};

Exercises

There is a starter file for these exercisesxércises/food_starter.pl . You may also find it useful
to read Appendix C.

1. Create data structures as follows:

a. Create a hash callegbasta_prices which contains prices for small, medium and large
serves of pasta.

b. Create a hash calleemilkshake_prices ~ which contains prices for small, medium and
large milkshakes.

c. Create a hash callesmenucontaining references to the above hashes, so that givereafy
food and a size you can find the price of it. Don’t forget thatiyloash must contain both
keys (the type of food), and values (a reference to the datetate containing the prices).

2. Print out the cost of a large pizza by referencing ywuienuhash.

3. Code already exists to accept the food-type and size fnemger. Change the print line so that
it prints the correct price for that food choice.

4. Convert the menu hash to use anonymous data structurasi{ahhashes) instead of the
original three pizza, pasta and milkshake hashes. Chetldbiacustomer code works with this
change.

5. Add a new element to your foods hash which contains thepo€ salads. Rather than adding
this in when you create the hash, instead add it separately.

6. Create a subroutine which can be passed a scalar and effea@mce. Check whether there is
an element in the hash which has the scalar as its key. Himéxisgs for this.

Answers for the above exercises can be founskércises/answers/food.pl

Perl Training Australia (http://perltraining.com.au/) 87

Chapter 11. References and complex data structures

Disambiguation and curly braces

Often in our code, we need to treat a reference as its undgrtiata structure. For a simple
reference, this is easy; we prepend the reference with theppate sigil and it just works:

my $hashref = { a => 1, b => 2, ¢ => 4, d => 8 };
foreach (keys %$hashref) {
}

What can cause us problems is when the reference isn't sdesikivipat should Perl do, in the
following case?

my @result = @$array[0];

Does this mean:

- Find @array .
« Look up indexo: $array[0]
« Turn that array[0]) into an array@$array[0]

or:

- Find the array referencerray
- Treatthat as an arrag@sarray
- Take an array slice with index @sarray[0]

Perl does the latter, however if that is what we wanted theshveelld have writtess$array[0] , as
that explicitly returns a single (scalar) result.

We can force Perl to evaluate our expression as the firspirgtion above by using curly braces.
This allows us to clearly write:

my @result = @{$array[0]};

We canuse{.} ,@{.} Or%{.} syntaxto evaluate any expression and dereference thé.resul

Data::Dumper

88

Typically, to print out a data structure you have to undemtts underlying structure and then write
a number of loops to print it out in full. If the structure idatively simple such as a hash of hashes
of values, or even a hash of hash of arrays this isn’t too diffic

However, often data structures are very complex, and regadiand printing these structures can be
a tiresome exercise. It's also an unnecessary one, as &latdevork has already been done for you.
To save you from having to write specialised printing codevary program for debugging purposes,
there’s a special library you may find useful call@da::Dumper

Data::Dumper provides a function which takes Perl data structures antstilem into human
readable strings representing the data with in them. It eamsled just like this:

Perl Training Australia (http://perltraining.com.au/)

Chapter 11. References and complex data structures

use Data::Dumper;

my %HoH = (

Jacinta => {
age => 26,
favourite_colour => "blue",
sport => "swimming",
language => "Perl",

h

Paul => {
age => 27,
favourite_colour => "green",
sport => "cycling",
language => "Perl",

h

)
print Dumper \%HoH;

This will print out something similar to:

$VARL = {
'Paul’ => {
‘language’ => 'Perl’,
‘favourite_colour’ => ’green’,
'sport’ => ’cycling’,
‘age’ => 27
h
Jacinta’ => {
‘language’ => 'Perl’,
‘favourite_colour’ => ’blue’,
'sport’ => ’swimming’,
‘age’ => 26
}
h

Not only is this easy to read, but it’s also perfectly validiRede. This means you can use
Data::Dumper t0 easily give you a structure that you can paste into angitogram, or which can be
'serialised’ to a file and re-created at a later datga::Dumper has a lot more uses beyond simple
debugging.

Dumper expects to be given one or more references to data strudtudesnp. IfDumper is provided
with a hash or array then every element of the array, or eveyyakd value of the hash, will be
considered a separate data structure, and dump separféelyesults are not particularly useful:

result of: print Dumper %HoH;
$VARL = 'Paul’;
$VAR2 = {
‘language’ => 'Perl’,
‘favourite_colour’ => 'green’,
'sport’ => ’cycling’,
‘age’ => 27
b
$VAR3 = 'Jacinta’;
$VAR4 = {
‘language’ => 'Perl’,
‘favourite_colour’ => ’blue’,
'sport’ => ’swimming’,
‘age’ => 26
b

Perl Training Australia (http://perltraining.com.au/) 89

Chapter 11. References and complex data structures

You can read more about Data::Dumper 0n page 882 of the Camel book or in perldoc

Data::Dumper .

Exercises

1. UseData::Dumper to print out your data structures from the previous exercise

2. Useperldoc Data::Dumper to read aboubata::Dumper 's many options and configuration
variables.

Chapter summary

90

References are scalar data consisting of the memory adufragsiece of Perl data, and can be
used in arrays, hashes, and other places where you wouldngsenal scalar

References can be used to create complex data structupasganultiple arrays or hashes to
subroutines, and in object-oriented Perl.

References are created by prepending a backslash to alearabe.

References are dereferenced by replacing the name parioiadle name (e@o in $foo) with a
reference, for example replafe with $foo_ref to gets$sfoo_ref

References to arrays and hashes can also be dereferenugthgsarrow > notation.
References can be passed to subroutines as if they weresscala
References can be included in arrays or hashes as if theyseales.

Anonymous arrays can be made by using square bracketsdrafteaund; anonymous hashes can
be made by using curly brackets instead of round. These cardigned directly to a reference,
without any intermediate step.

Data::Dumper allows complex data structures to be printed out verbatithauit requiring full
knowledge of the underlying data structure.

Perl Training Australia (http://perltraining.com.au/)

Chapter 12. External Files and Packages

In this chapter...

In this chapter we’ll discuss how we can split our code infoesate files. We'll discover Perl’'s
concept of packages, and how we can use them to make our cadeabast and flexible.

Splitting code between files

When writing small, independent programs, the code canllydamcontained within a single file.
However there are two common occurrences where we woulddikave our programs span
multiple files. When working on a large project, often withmgalevelopers, it can be very
convenient to split a program into smaller files, each withae@rspecialised purpose. Alternatively,
we may find ourselves working on many programs that share somenon code base. This code
can be placed into a separate file which can be shared acamgsmprs. This saves us time and effort,
and means that bug-fixes and improvements need to be madmaengingle location.

Require
Perl implements a number of mechanisms for loading code &xternal files. The most simplest of
these is by using thequire function:

require ‘file.pl’;

Perl is smart enough to make sure that the same file will natdladed twice if it's required through
the same specified name.

The file is only included once in the following case:
require ‘file.pl’;
require ‘file.pl’;

Required filesnustend with a true value. This is usually achieved by having thal itatement of
the file being:

1

C Conflicts can occur if our included file declares subroutines with the same name as those that
appear in our main program. In most circumstances the subroutine from the included file takes
precedence, and a warning is given.

We will learn how to avoid these conflicts later in this chapter when we discuss the concept of
packages.

Perl Training Australia (http://perltraining.com.au/) 91

Chapter 12. External Files and Packages

C The use of require has been largely deprecated by the introduction of modules and the use
keyword. If you're writing a code library from scratch we recommend that you create it as a
module. However, require is often found in legacy code and is a useful thing to understand.

Any code in the file (except for subroutines) will be executed immediately when the file is
required. The require occurs at run-time, this means that Perl will not throw an error due to a
missing file until that statement is reached, and any subroutines inside the file will not be
accessible until after the require

Variables declared with my are not shared between files, they are only visible inside the block or
file where the declaration occurs. To share packages between files we use package variables
which are covered later in this chapter.

The use of modules (which we will learn about later) allows for external files to be loaded at
compile-time, rather than run-time.

Use strict and warnings

Perl pragmas, such asict andwarnings are lexically scoped. Just like variables declared with
my, they last until the end of the enclosing block, file or eval.

This means that you can turn strict and warnings on in one fileowt it influencing other parts of
your program. Thus, if you're dealing with legacy code, tlyenr new libraries, modules and classes
can be strict and warnings compliant even though the oldge ¢onot.

Example

The use ofequire is best shown by example. In the following we specify two filegetings.pl
andprogram.pl . Both are valid Perl programs on their own, although in thisegGreetings.pl
would just declare a variable and a subroutine, and thenAxiive do not intend to execute
Greetings.pl on its own, it does not need to be made executable, or inclstielaang line.

Our library code, to be included.

Greetings.pl

Provides the hello() subroutine, allowing for greetings

in a variety of languages. English is used as a default
if no language is provided.

use strict;
use warnings;

my %greeting_in = (

en => "Hello",
‘en-au’ => "G’day",

fr => "Bonjour",

ip => "Konnichiwa",
zh => "Nihao",

92 Perl Training Australia (http://perltraining.com.au/)

Chapter 12. External Files and Packages

sub hello {
my $language = shift || "en";

my $greeting = $greeting_in{$language}
or die "Don’t know how to greet in $language";

return $greeting;

}

1

Our program code.

program.pl

Uses the Greetings.pl file to provide another hello() subr outine

use strict;

Get the contents from file.pl
require "Greetings.pl";

print "English: ", hello("en"), "\n"; # Prints "Hello"
print "Australian: ", hello("en-au"),"\n"; # Prints "G'da y"
Exercises

1. Create afile callestyTest.pl Define at least two subroutingsiss andfail which print some
amusing output. Make sure that it uset

2. Test that your code compiles by runniper! -c MyTest.pl. (The-c tells Perl to check your
code).

3. Create a simple Perl script which requikggest.pl and calls the functions defined within.

Introduction to packages

The primary reason for breaking code into separate filesimpoove maintainability. Smaller files
are easier to work with, can be shared between multiple progrand are suitable for dividing
between members of large teams. However they also haveptiodilems.

When working with a large project, the chances of naming atefincreases. Two entirely different
files may have two different subroutines with the same namwegker it is only the last one loaded
that will be used by Perl. Files from different projects marb-used in new developments, and
these may have considerable name clashes. Multiple filealsammake it difficult to determine
where subroutines are originally declared, which can makeigging difficult.

Perl'spackagesre designed to overcome these problems. Rather than jtisigpeode into separate
files, code can be placed into independent packages, edtitsvitvn namespace. By ensuring that
package names remain unique, we also ensure that all sin@eand variables can remain unique
and easily identifiable.

A single file can contain multiple packages, but conventictedkes that each file contains a package
of the same name. This makes it easy to quickly locate the icogley given package.

Perl Training Australia (http://perltraining.com.au/) 93

Chapter 12. External Files and Packages

Writing a package in Perl is easy. We simply usegiage keyword to change our current
package. Any code executed from that point until the endettirrent file or block is done so in the
context of the new package.

By declaring that all our code is in the "Greetings" package ,
we can be certain not to step on anyone else’s toes, even if
they have written a hello() subroutine.

package Greetings;

use strict;
use warnings;

my %greeting_in = (

en => "Hello",
‘en-au’ => "G’day",
fr => "Bonjour",
ip => "Konnichiwa",
zh => "Nihao",

)

sub hello {

my $language = shift || "en";

my $greeting = $greeting_in{$language}
or die "Don’t know how to greet in $language";

return $greeting;

}
3

The package that you're in when the Perl interpreter sthgfofe you specify any package) is called
main . Package declarations use the same ruleg;abat is, it lasts until the end of the enclosing
block, file, or eval.

Perl convention states that package names (or each partackage name, if it contains many parts)
starts with a capital letter. Packages starting with looase are reserved for pragmas (such as
strict).

The scoping operator

94

Being able to use packages to improve the maintainabiliguofcode is important, but there’s one
important thing we have not yet covered. How do we use submesitvariables, or filehandles from
other packages?

Perl provides acoping operatom the form of a pair of adjacent colons. The scoping operator
allows us to refer to information inside other packages,iangually pronounced "double-colon".

require "Greetings.pl";

Greetings in English.
print Greetings::hello("en"),"\n";

Greetings in Japanese.
print Greetings::hello("jp"),"\n";

This calls the hello() subroutine in our main package

(below), printing "Greetings Earthling".
print hello(),"\n";

Perl Training Australia (http://perltraining.com.au/)

Chapter 12. External Files and Packages

sub hello {
return "Greetings Earthling";

}

Calling subroutines like this is a perfectly acceptableralative to exporting them into your own
namespace (which we’ll cover later). This makes it veryclelaere the called subroutine is located,
and avoids any possibility of an existing subroutine claghwith that from another package.

Occasionally we may wish to change the value of a variableatler package. It should be very
rare that we should need to do this, and it's not recommendediy so unless this is a documented
feature of your package. However, in the case where we dotoedlthis, we use the scoping
operator again.

use Carp;
Turning on $Carp::Verbose makes carp() and croak() provid e
stack traces, making them identical to cluck() and confess 0.

This is documented in 'perldoc Carp'.
$Carp::Verbose = 1;

There’s a shorthand for accessing variables and subrauitithemain package, which is to use
double-colon without a package name. This meanssthied is the same asmain::foo

C When referring to a variable in another package, the sigil (punctuation denoting the variable
type) always goes before the package name. Hence to get to the scalar $bar in the package Foo,
we would write $Foo::bar and not Foo::$bar

It is not possible to access lexically scoped variables (those created with my) in this way.
Lexically scoped variables can only be accessed from their enclosing block.

Package variables and our

It is not possible to access lexically scoped variabless@tareated witlmy) outside of their

enclosing block. This means that we need another way toecv@aiables to make them globally
accessible. These global variables are cglackage variablesand as their name suggests they live
inside their current package. The preferred way to creatkamge variables, under Perl 5.6.0 and
above, is to declare them with ther statement. Of course, there are alternatives you can uke wit
older version of Perl, which we also show here:

package Carp;
our $VERSION = '1.01"; # Preferred for Perl 5.6.0 and above

use vars qw/$VERSIONY/, # Preferred for older versions
$VERSION = '1.01%

$Carp:VERSION = '1.01 # Acceptable but requires that we then
always use this full name under strict

In all of the cases above, both our package and external @daacess the variable using
$Carp::VERSION .

Perl Training Australia (http://perltraining.com.au/) 95

Chapter 12. External Files and Packages

Exercises

1. Change youmyTest.pl file to include a package nanwgTest
2. Update your program to call the MyTest functions usingstt@ping operator.

3. Create a package variatsfeass_MARKISINgour insideMyTest.pl which defines an appropriate
pass mark.

4. In your Perl script, create a loop which tests 10 randombarsifor pass or fail with reference
to thespAss_MARKackage variable. Print the appropripées orfail message.

5. Print out the version of thewdmodule installed on your training server. The version nunigke
in $Cwd::VERSION . (You will need touse Cwd; first.)

6. Look at the documentation for tlwarp module using th@erldoc Carp command. This is one
of Perl’s most frequently used modules.

Answers for the above exercises can be founskércises/answers/MyTest.pl and
exercises/answers/packages.pl

Chapter summary

96

- A package is a separate namespace within Perl code.
- Afile can have more than one package defined within it.
« The default package isain .

« We can get to subroutines and variables within packagesihy tlsee double-colon as a scoping
operator for exampleoo::bar() calls thebar() subroutine from th&oo

- To write a package, just writgackage package_name Where you want the package to start.

- Package declarations last until the end of the enclosingkbfde or eval (or until the next
package statement).

- Package variables can be declared withdiltekeyword. This allows them to be accessed from
inside other packages.

- Therequire keyword can be used to import the contents of other files felims program.

- Files which are included usingquire must end with a true value.

Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

In this chapter...
In this chapter we’ll discuss modules from a user’s stanaipdie’ll find out what a module is, how
they are named, and how to use them in our work.

In the remainder of the chapter, we will investigate how tiewour own modules.

Module uses

Perl modules can do just about anything. In general, how#werre are three main uses for modules:

- Changing how the rest of your program is interpreted. Fomgpla, to enforce good coding
practices (se strict) or to allow you to write in other languages, such as Lai#a (
Lingua::Romana::Perligata), or to provide new language featurese(Switch).

- To provide extra functions to do your worksg¢ Carp Oruse CGl qw/:standard/).

« To make available new classesd HTML::Template Oruse Finance:Quote) for object oriented
programming.

Sometimes the boundaries are a little blurred. For exartipde,cI module provides both a class and
the option of extra subroutines, depending upon how youioad

What is a module?

A module is a separate file containing Perl source code, whildiaded and executed at compile
time. This means that when you write:

use CGl;

Perl looks for a file calle¢Gl.pm (.pm forPerl Modulg, and upon finding it, loads it in and executes
the code inside it, before looking at the rest of your program

Sometimes you need to tell Perl where to look for your Perl modules, especially if some of

them are installed in a non-standard place. Like many things in Perl, There’s More Than One
Way To Do It. Check out perldoc -q library for some of the ways to tell Perl where your modules
are installed.

Sometimes you might choose to pass extra information to thetute when you load it. Often this is
to request the module create new subroutines in your nammespa

use CGI gw(:standard);
use File::Copy qw(copy);

Note the use ofw() , this is a list of words (in our case, just a single word). psssible to pass
many options to a module when you load it. In the case abovesasking thecGI module for the
:standard ~ bundle of functions, and thele::Copy module for just theopy subroutine.

Perl Training Australia (http://perltraining.com.au/) 97

Chapter 13. Modules

C Each module has a different set of options (if any) that it will accept. You need to check the
documentation of the module you're dealing with to which (if any) are applicable to your needs.

To find out what options exist on any given module read its documentation: perldoc nodul e_nane.

The double-colon

Sometimes you’ll see modules with double-colons in theines, likeFinance::Quote
Quantum::Superposition , Or CGl::Fast . The double-colonis a way of grouping similar modules
together, in much the way that we use directories to groupttmy similar files. You can think of
everything before the double-colon as the category thatibdule fits into.

In fact, the file analogy is so true-to-life that when Perlrsbas for a module, it converts all
double-colons to your directory separator and then lookghat when trying to find the appropriate
file to load. Scrinance::Quote looks for a file namecduote.pm in a directory calledrinance . That
two modules are in the same category doesn’t necessarily thaathey're related in any way. For
exampleFinance:Quote andFinance::QuoteHist have very similar names, and their maintainers
even enjoy very similar hobbies, they certainly have simikes, but neither package shares any
code in common with the other.

It's perfectly legal to have many double-colon separatormodule names, so
Chicken::Bantam::SoftFeather::Pekin is a perfectly valid module name.

Exercise

1. UsingFile:Copy ~make a copy of one of your files. If you're eager, ask the uséchnfile to
copy and what to name the copy.

Where does Perl look for modules?

98

Perl searches through a list of directories that are deterhivhen the Perl interpretor is compiled.
You can see this list (and all the other options Perl was cadpiith), by usingperl -V.

The list of directories which Perl searches for modulesasest in the special variab@INc It's
possible to change@Incso that Perl will search in other directories as well. Thisriportant if you
have installed your own private copy of some modules.

Of course, being Perl, there’s more than one way to change Here are some of the ways to add
to the list of directories insid@INC

« Call Perl with thel command-line switch with the location of the extra diregttr search. This
can be done either in the shebang line, or on the command-imexample:

perl -l/path/to/libs

« Use thaib pragma in your script to inform Perl of extra directoriest Eample:
use lib "/path/to/libs";

Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

+ Setting thePERL5LIB environment variable with a colon-separated list of diveies to search.
Note that if your script is running with taint checks this gnmment variable is ignored.

Sinceuse statements occur before regular Perl code is executed fyimaggli@Incdirectly usually
does not have the desired effect.

Finding installed modules

Perl comes with many modules in its standard distributiau ¥an get a list of all of them by doing
aperldoc perimodlib. The Camel book describes the standard modules in chapitenso332
(chapter 7, 2nd Ed).

Besides from the modules in the standard distribution, you can also see other modules that
were manually installed on your system by using perldoc perllocal . Generally this file only lists
other modules that were installed by hand, or using one of the CPAN installers (more on this
later). Modules installed through your operating system’s packaging system may not appear in
perldoc perllocal .

To find a complete list of modules available on your system, regardless of how they were
installed, read the documentation provided by perldoc -q installed .

You can get more information on any module that you have liestéy usingperldoc rodul e_nane.
For exampleperldoc English will give you information about thenglish module. You can also
useperldoc -l nodul e_nane to locate a particular module, apérldoc -m nodul e_nane to view the
source of a module.

Most importantly, there’s a great resource for finding medwdalled theComprehensive Perl
Archive Networkor CPANfor short. The CPAN website (http://www.cpan.org/) prasdnany
ways of finding the modules you're after and browsing theudoentation on-line. It's highly
recommended that you become familiar with CPAN’s searctufea, as many common problems
have been solved and placed in CPAN modules.

Exercise

1. Open a web browser to CPAN’s search site (http://segvah.org) and spend a few minutes
browsing the categories provided.

2. Perform a search on CPAN for a problem domain of your chdig®u can'’t think of one,
search OrcGl, XMLOr SOAR

Using CPAN modules

CPAN provides more than 9,000 separate and freely avaifabtiules. This makes CPAN an
excellent starting point when you wish to find modules to tsellve your particular problem.
However, you should keep in mind that not all CPAN modulescagated equal. Some are much
better documented and written than others. Some (such astloe bBI) modules have become
de-facto standards, whereas others may not be used by aeyoset the module’s author.

Perl Training Australia (http://perltraining.com.au/) 99

Chapter 13. Modules

As with any situation when you're using third party code, whiould take the time to determine the
suitability of any given module for the task at hand. Howeirealmost all circumstances it's better
to use or extend a suitable module from CPAN rather thandrigrre-invent the wheel.

Many of the popular CPAN modules are pre-packaged for pomparating systems. In addition,
thecpANmodule that comes with Perl can make the task of finding artdllimg modules from
CPAN much easier.

Most CPAN modules come witREADMENd/ONNSTALL files which tell you how to install the
modules. This may vary between operating systems. On Unbtaix-like operating systems the
process is usually:

perl Makefile.PL
make

make test
make install

For ActiveState Perl installations (which includes mostisoft Windows machines) the use of
PPM (Programmer’s Package Manager) is recommended. PRNMIpsca command line interface
for downloading and installing pre-compiled versions ofSnGPAN modules.

Some times you may not find the module you're looking for tigto@PM. In this case you may
want to build your own. The process for this is similar to tfatUnix machines, although instead of
usingmake you will need to us@make which is amake equivalent made by Microsoft. Some Perl
modules also require a C compiler.

@Some times you may not be able to, or may not wish to, install CPAN modules in their default
path. In this case you can provide a flag to the Makefile.PL program instructing it on your
preferred top level directory. For example:

perl Makefile.PL PREFIX=/home/sue/perl/

If you install your module in a different directory than your other Perl modules you may have to
use the ib pragma, mentioned in the previous section, to tell Perl where to find your files. Once
a module is installed, you can use it just like any other Perl module.

For coverage on installing modules on various operating systems read perldoc perimodlib

If you want to distribute your own modules read perldoc perlnewmod

Writing modules

100

Modules contain regular Perl code, and for most modulesdlemajority of that code is in
subroutines. Sometimes there are a few statements whtéliga variables and other things before
any of those subroutines are called, and those get executeddiately. The subroutines get
compiled and tucked away for later use.

Besides from the code that's loaded and executed, two me@adphings happen. Firstly, if the last
statement in the module did not evaluate to true, the Perpdenthrows an exception (usually
halting your program before it even starts). This is so thabaule could indicate that something

Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

went wrong, although in reality this feature is almost nay&sd. Virtually any Perl module you care
to look at will end with the statement to indicate successful loading.

The other thing that happens when a modulaéd is that itsimport subroutine (if one exists) gets
called with any directives that were specified onike line. This is useful if you want to export
functions or variables to the program that’s using your niedr functional programming but is
almost never used (and very often discouraged) for objéentad programming.

As you've no doubt guessed by now, modules and packagesgitband-in-hand. We know how to
use a module, but what are the rules on writing one? Well, idfpete is this:
A module is a file that contains a package of the same name.

That's it. So if you have a package callede::Fruit::Citrus::Lime , the file would be called
Tree/Fruit/Citrus/Lime.pm , and you would use it withse Tree::Fruit::Citrus::Lime;

A module can contain multiple packages if you desire. So ¢vengh the module is called
Chess::Piece , it might also contain packages foress::Piece::Knight and

Chess::Piece::Bishop . It's usually preferable for each package to have its ownuteatherwise
it can be confusing to your users how they can load a partipalekage.

When writing modules, it's important to make sure that theyaell-named, and even more
importantly that they won't clash with any current or futimedules, particularly those available via
CPAN. If you are writing a module for internal use only, youncdart its name withocal:: ~ which

is reserved for the purpose of avoiding module name clashes.

You can read more about writing modules in perldoc perlmodlib , perldoc perimod ,

perldoc perlmodstyle , and a little on pages 554-556 of the Camel book.

To document your modules so that peridoc can provide information about them, read perldoc
perlpod and perldoc perlpodspec

Use versus require

Perl offers several different ways to include code from olegifito anotheruse is built on top of
require and has the following differences:

- Files which araise d are loaded and executed at compile-time, not run-times igans that all
subroutines, variables, and other structures will exigbteeyour main code executes. It also
means that you will immediately know about any files that Bedld not load.

- use allows for the import of variables and subroutines from thedupackage into the current one.
This can make programming easier and more concise.

- Files called withuse can take arguments. These arguments can be used to recemat fatures
that may be provided by some modules.

Both methods:

« Check for redundant loading, and will skip already loadeskfil
- Raise an exception on failure to find, compile or execute the fi
- Translate: into your systems directory separator.

Where possiblese and Permodulesare preferred ovaequire

Perl Training Australia (http://perltraining.com.au/) 101

Chapter 13. Modules

Warnings and strict

When your module is used by a script, whether or not it runk wirnings depends upon whether
the calling script is running with warnings turned on. You¢and should) invoke these warnings
pragma to turn on warnings for your module without changiagnings for the calling script.

Your modules should always use strict.

use strict;
use warnings;

Exercise

This exercise will have you adapt youyTest.pl code to become a module. There’s a list at the end
of this exercise of things to watch out for.

1. Create a directory namediib .
2. Move youmviyTest.pl file into yourpslib ~ directory and rename it t@yTest.pm .
3. Make sureviyTest.pm useSstrict andwarnings .
4. Test that your module has no syntax errors by runpen-c MyTest.pm.
5. Change your Perl script from before to useithe pragma in order to find your moduleuge
lib "pslib’;)
6. Change your Perl script tge your module. Check that everything still works as you expect

7. Add a print statement to your module (outside any submes)i. This should be printed when
the module is loaded. Check that this is so.

Answers can be found ixercises/answers/p5lib/MyTest.pm and
exercises/answers/modules.pl

Things to remember...

The above exercises can be completed without reference foltbwing list. However, if you're
having problems, you may find your answer herein.

- A module is a file that contains a package of the same name.

- Perl modules must return a true value to indicate succelssfding. (Puti; at the end of your
module).

- To use a module stored in a different directory, add thisatiing to the@incarray. (Putse lib
'path/to/modules/’ before the otheuse lines.

- To call a subroutine which is inside a module, you can acd¢esa the double-colon. Eg:
MyModule::test();

102 Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

Exporting and importing subroutines

Writing your ownimport function for each and every module would be a tiresome arat-prone
process. However, Perl comes with a module catigdrter , which provides a highly flexible
interface with optimisations for the common case.

Exporter Works by checking inside your module for three special datactures, which describe
both what you wish to export, and how you wish to export thehrese structures are:

« @EXPOR3ymbols to be exported into the user’'s name space by default
« @EXPORT_0osymbols which the user can request to be exported

« %EXPORT_TAGHat allows for bundles of symbols to be exported when the nespiests a special
export tag.

@ISA

To take advantage @&xporter 's import function we need to let Perl know that our package has a
special relationship with thexporter package. We do this by telling Perl that waderit from

Exporter . Our package and the rest of our program does not need to tiewini an object oriented
style for this to work.

Now when Perl goes looking for theport function it will first look in our package. If it can’'t be
found there, Perl will look for a special array call@isA The contents of th@isaarray is
interpreted as a list of parent classes, and each of thelseenskearched for the missing method.

To specify that this package is a sub-class of the Exporteluteave include the following lines:

use Exporter;
our @ISA = qw(Exporter);

use base

An alternative to adding parent modulesagsAyourself is to use thease pragma. This allows you
to declare a derived class based upon the listed parenéslagsus the two lines above becomes:

use base qw(Exporter);

Thebase pragma takes care of ensuring that Higorter module is loaded.

Thebase pragma is available for all versions of Perl above 5.6.0.

An example

Here’s an example of just usir@exPORANA@EXPORT_oKOur hypothetical module,
People::Manage IS used for managing interpersonal relations.

package People::Manage;

use base qw(Exporter);

use vars gw(@EXPORT @EXPORT_OK);

@EXPORT = gw(invite $name @friends %addresses); # invite is a subroutine
@EXPORT_OK = gw(&taunt $spouse @enemies %postcodes); # s0 i s taunt

The ampersand in front of subroutines is optional.

Perl Training Australia (http://perltraining.com.au/) 103

Chapter 13. Modules

104

Exporting by default

Exporting your symbols by default, by populating thexporarray, means that anyone using your
module will receive these symbols without having to ask fe@mh. This is generally considered to be
bad style, and is sometimes referred to as 'polluting’ tHeeca namespace.

The reason this is considered to be bad style is that thelhéngy in theuse line to indicate that
anything is being exported. A programmer who is not familéh the module may inadvertently
define their own subroutines or variables which clash wids#that are exported. Likewise, a
reviewer examining the code will not easily be able to deteenfrom which module a given
subroutine may have been exported, especially if many nesdare used.

Using the@expPoRrarray is highly discouraged.

Using @exPORT_oallows the user to choose which symbols they wish to bring inéir name
space. All other symbols can be accessed by using theirdalle) such as
People::Manage::invite() , when required.

An example
Our module:

#HHHH People/Manage.pm #tH#HH#HtHH

package People::Manage; # create a package of the same name
use strict;

use warnings;

use base qw(Exporter);

List out the things we wish to export
our @EXPORT_OK = qgw(invite $name @friends %addressbook
taunt $spouse @enemies @children $pet);

Only package variables can be exported, as such all of these
variables need to be declared with 'our’ not 'my’.

our $name = "Fred"

our $spouse = "Wilma";

our @children = qw(Pebbles);

our @friends = qw(Barney Betty);

our $pet = "Dino";

my $address = "301 CobbleStone Way, Bedrock";

our %addresshook = (
Barney => "303 Cobblestone Way, Bedrock",
Betty => "303 Cobblestone Way, Bedrock",
"Barney’s Mom" => "142 Boulder Ave, Granitetown",

):

sub invite {
my ($friend, $date) = @_;
return "Dear $friend,\n $spouse and | would love you to come t o".
"dinner at our place ($address) on $date.\n\n".
"Yours sincerely, $name\n”;
}
sub taunt {

my ($enemy) = @_;
return "Dear $enemy, my pet $pet has more brains than you.\n" ;

1; # module MUST end with something true

Perl Training Australia (http://perltraining.com.au/)

Chapter 13. Modules

Our program:

#HitHHA dinner.pl #HHEHHEHHET

#!/usr/bin/perl -w

use strict;

use People::Manage gw(invite %addressbook); # only using a few things

Invite some people over for dinner.

foreach my $person (keys %addressbook) {
print invite($person,"next Tuesday");

}

Importing symbols

Once your module is written and it exports a few symbolstit’'e to use it. This is done with the
use command that we've seen withict and other modules. We can load our module in three
ways:

« use People:Manage; Which imports all of the symbols stored @People::Manage::EXPORT .

« use People::Manage (); which importsnoneof the symbols in either
@People::Manage::EXPORT Or @People::Manage::EXPORT_OK .

« use People:Manage qw($name $spouse invite); which imports all the listed symbols. If a
symbol is mentioned which is not in eith@People::Manage::EXPORT Of
@People::Manage::EXPORT_OK then a fatal error will occur.

Exercises

These exercises build on the previous exercises.

1. Change your MyTest.pm module to export flaes andfail symbols and import those into
your script. Change your script to callss andfail instead of their fully qualified names.

2. Change your module to export thleass_MARwariable and use that instead of its fully qualified
name.

Exporting tags

If you wish to export groups of symbols that are related tdhesber, there is amEXPORT_TAGSash
which provides this functionality. This can be used in thikof@ manner;

%EXPORT_TAGS = (family => [gw/$name $spouse @children $pet /1],
social => [qw/%address invite taunt @friends/],

):

Names which appear mEXPORT_TAGSIUSt also appear I@EXPORTr @EXPORT_OKags themselves
cannot be used in either export array.

Perl Training Australia (http://perltraining.com.au/) 105

Chapter 13. Modules

Importing symbols through tags

Symbols grouped in tags can be imported normally, by spegjfgach symbol, or by using the tag
provided. This is done by prepending the tag name with a colon

use People::Manage gw/:family/; # Family related informat ion.

use People::Manage qw/:sociall/; # Social-related symbol S.
use People::Manage qw/:family :social/; # Both

Exercise

1. In yourmyTest module, create a tag which contains both subroutines anthasastead of
specifying them both during the import.

Chapter summary

106

A module is a separate file containing Perl source code.
We can use modules by writinge modul e_nare; before we want to start using it.

Perl looks for modules in a list of directories that are deieed when the Perl interpretor is
compiled.

Module names may contain double-colons)(in their names such anance::Quote , these tell
where Perl to look for a module (in this case in thence/ directory.

Modules can be used for class definitions or as librariesdarroon code.
A module can contain multiple packages, but this is oftenchibea.

It's often a good idea to put your own modules into tlheal namespace.

Perl Training Australia (http://perltraining.com.au/)

Chapter 14. Using Perl objects

In this chapter...

While discussion of Object Oriented programming is beydredscope of this course, a great many
modules you may encounter while programming provide anablojeented interface. This chapter
will teach you what you need to know to use these modules.

Perl Training Australia runs a two day course on Object Oriented Programming in Perl, for
more information visit our website (http://www.perltraining.com.au/) or talk to your instructor
during a break.

You may also want to look at perldoc perlboot , perldoc perltoot , perldoc perltooc , and
perldoc perlbot .

Objects in brief

An objectis a collection of data (attributes) and subroutines (mashthat have been bundled into a
single item. Objects often represent real-world conceptigical constructs. For example, an
invoiceobject may have attributes representing the date postezlddée, amount payable, GST,
vendor, and so on. The invoice may have various methodslthatf@r payment to be made, and
possibly a payment to allow the invoice to be disputed.

An object in Perl is a reference to a specially prepared dadatsre. This structure may be a hash,
an array, a scalar or something more complex. However, assttreof an object, we don’t need to
know (and should not care) what sort of structure is actusing used. What matters are the
methodsn the object, and how we can use them.

A Perl object is aspecialkind of reference because it also knows what class it beltmds other
words, an object knows what kind of object it is.

Object orientation allows us to creataultiple objects from the same class which can each store
different information and behave differently accordinghat information. This makes it very easy
for the users of those objects, as it makes the informatiep ®atrack and manipulate.

Using an object

To use a Perl module which provides an object oriented iaterfveuse it without specifically
importing any methods. For our examples we will usettiemodule, which allows us to interact
with a number of databases, and is one of the most commontiyraedules in Perl.

#!/usr/bin/perl -w
use strict;
use DBI; # We can now create DBI objects.

107
Perl Training Australia (http://perltraining.com.au/)

Chapter 14. Using Perl objects

To learn more about DBI read perldoc DBI and the pBl homepage (http://dbi.perl.org/).

Perl Training Australia also runs a Database Programming with Perl course which you may find
of interest. For more information visit our website (http://www.perltraining.com.au/) or talk to your
instructor during the break.

Instantiating an object

To create a new object we call the constructor method ondineecof the class. In many cases this
method is calledew, however withpsl it is calledconnect ; as we get our database handle by
connectingo a database.

use DBI;

Create a DBI object (database connection handle)
my $dbh = DBI->connect($data_source, $username, $passwor d);

By convention, our connected database object is calletd, for "database handle".

We can create a number of database handles (objects), withceanecting to different databases or
with different usernames and passwords. We could alsoeceeatimber of database handles
connecting to the same database. This could potentiallgétiLif we wished to execute multiple
SQL commands simulatenously, particularly if we're degilivith a clustered database system.

use DBI,

my $oracle_dbh = DBI->connect($oracle_dsn, $oracleuser, $oraclepasswd);

my $postgres_dbh = DBI->connect($postgres_dsn, $postgre suser, $postgrespasswd);
my $mysql_dbhl = DBI->connect($mysql_dsn, $mysqgluserl, $ mysqlpasswd1l);

my $mysql_dbh2 = DBI->connect($mysql_dsn, $mysqgluser2, $ mysqlpasswd?2);

Each of these objects represent a different database diomand we can call the othesl
methods on these objects from now on. Each object will renegmwhich database it refers to
without further work on behalf of the programmer.

Calling methods on an object
As we covered earlier, we can get at the contents of a norrfebrece by using the arrow operator:

$array_ref->[$index]; # Access array element via array ref erence
$hash_ref->{$key}; # Access array element via hash referen ce

It should come as no big surprise that Perl object method®i(mtions, if you'd prefer) can be
accessed the same way:

$object->method(); # Call method() on $object

In a specific case, we can call a method on one obauiobjects as follows:

use DBI;
my $dbh = DBI->connect($data_source, $username, $passwor d);
$dbh->do("UPDATE friends SET phone = '12345678'" WHERE name = "Jack™);

108 Perl Training Australia (http://perltraining.com.au/)

Chapter 14. Using Perl objects

Destroying an object

When you no longer need an object you can let it go out of sgapeas when you no longer need
any other Perl data structure. In some cases the docunmmiadiy recommend calling certain clean
up functions. In the case oBlI it is considered polite to disconnect from the database.

$dbh->disconnect();

Chapter summary

- Perl objects are special references to Perl data struaitries know which class they belong to.

- Obiject orientation allows us to create multiple objectsrfithe same class to store different
information.

- To use a Perl class we juste the module.

« To create an object we call the constructor method on the.clas
« Many objects of the same class can be created.

- To call a method on an object we use the arrow operator.

- Objects are destroyed when they go out of scope.

Perl Training Australia (http://perltraining.com.au/) 109

Chapter 14. Using Perl objects

110 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

In this chapter...

This chapter builds on the basic regular expressions taaghiér in the course. We will learn how to
handle data which consists of multiple lines of text, inahgchow to input data as multiple lines and
different ways of performing matches against that data.

Assumed knowledge

You should already be familiar with the following topics:

- Regular expression meta characters
- Quantifiers

- Character classes and alternation

« Them// matching function

« Thes/// substitution function

« Matching strings other tha® with the=~ matching operator

Patterns and regular expressions are dealt with in depth in chapter 5 (chapter 2, 2nd Ed) of

the Camel book, and further information is available in the online Perl documentation by typing
perldoc perlre .

Capturing matched strings to scalars

Perl provides an easy way to extract matched sections ofudaregxpression for later use. Any part
of a regular expression that is enclosed in parentheseptisrea and stored into special variables.
The substring that matches first set of parentheses willdvsedins1, and the substring that matches
the second set of parentheses will be storegtiand so on. There is no limit on the number of
parentheses and associated numbered variables that yog&an

10w)(\Ww)/; # matches 2 word characters and stores them in $1 , $2
1(w+)/; # matches one or more word characters and stores the m in $1

Parentheses are numbered from left to right byaheningparenthesis. The following example
should help make this clear:

$_ = "fish";

1((Ww)(\Ww))/; # captures as follows:

#$1 = "', $2 = F, $3 = 7

$_ = "1234567890";

1(\d)+/; # matches each digit and then stores the last digit
matched into $1
1(\d+)/; # captures all of 1234567890

Perl Training Australia (http://perltraining.com.au/) 111

Chapter 15. Advanced regular expressions

Evaluating a regular expression in list context is anotheey W capture information, with
parenthesised sub-expressions being returned as a ligtal\ese this instead of numbered variables
if we like:

$_ = "Our server is training.perltraining.com.au.";

my ($full, $host, $domain) = /(((\w-]+)\.(\w.-]+))/;

print "$1\n"; # prints "training.perltraining.com.au."

print "$full\n"; # prints "training.perltraining.com.au

print "$2 : $3\n"; # prints "training : perltraining.com.au .
print "$host : $domain\n" # prints "training : perltraining .com.au."

C A regular expression that fails to match the given string does not always reset $1, $2 etc.
Therefore, if we do not explicitly check that our regular expression worked, we can end up using
data from a previous match. This can mean that the following code may cause unexpected
surprises:

while(<>) {
check that we have something that looks like a date in
YYYY-MM-DD format.

if(/(\d{4})-(\d{2})-(\d{2})/) {
print STDERR "valid date\n";
}

next unless $1;

if($1 >= $recent_year) {
print RECENT_DATA $_;
}
else {
print OLD_DATA $_;
}
}

If this code encounters a line which doesn't appear to be a valid date, the line may be printed to
the same file as the last valid line, rather than being discarded. This could result in lines with
dates similar to "1901-3-23" being printed to RECENT_DATAor lines with dates like "2003-1-1"
being printed to OLD_DATA

Extended regular expressions

112

Regular expressions can difficult to follow at times, esalgcif they're long or complex. Luckily,
Perl gives us a way to split a regular expression acrosspieilines, and to embed comments into
our regular expression. These are knowexdended regular expressians

To create a extended regular expression, we use the speaiaitch. This has the following effects
on the match part of an expression:

+ Spaces (including tabs and newlines) in the regular exjpresse ignored.
- Anything after an un-escaped hasgh i ignored, up until the end of line.

Extended regular expressions do not alter the format ofébersd part in a substition. This must still
be written exactly as you wish it to appear.

Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

If you need to include a literal space or hash in an extendprkesgion you can do so by preceeding
it with a backslash.

By using extended regular expressions, we can change this:

Parse a line from ’Is -I
m{M([\W-]+)\s+(\d+)\s+(\Ww+)\s+(\w+)\s+(\d+)\s+(\w+\ sH\d+H\s+\d:]+)\s+(. *)$}

into this:

Parse a line from ’ls -I

m{
n # Start of line.
(Nw-]+)\s+ # $1 - File permissions.
(\d+)\s+ # $2 - Hard links.
(\Ww+)\s+ # $3 - User
(\Ww+)\s+ # $4 - Group
(\d+)\s+ # $5 - File size
(\WwH\s+\d+\s+[\d:]+)\s+ # $6 - Date and time.
(. *) # $7 - Filename.
$ # End of line.

X

As you can see, extended regular expressions can make yaeinoach easier to read, understand,
and maintain.

Exercise
For these exercises you may find using the following strectiseful:

my @unmatched,;
while(<>) {
my ($origin, $date, $page) =
m{
REPLACEME
X

if($origin) {
print "$origin $date $page\n";
}
else { # Strange line, keep it for later
push @unmatched, $_;

}
}
if(@unmatched) {

print “"The following requests were not matched:\n", @unmat ched;
}

Web server access logs typically contain long lines of imfation, only some of which is of interest
at any given time. In thexercises/access-pta.log file you'll see an example taken from Perl
Training Australia’s webserver.

1. Write a regular expression which captures the requeginothe access date and requested
page. Print this out for each access in the file. The abovérggaode can be found in
exercises/log-process.pl

You can find an answer to this exercisekarcises/answers/log-process.pl

Perl Training Australia (http://perltraining.com.au/) 113

Chapter 15. Advanced regular expressions

Advanced exercise

1. Split tab-separated data into an array then print out elrhent using &reach loop (an
answer’s inexercises/answers/tab-sep.pl , an example file is imxercises/tab-sep.txt).

Greediness

Regular expressions are, by default, "greedy". This mdaatsany regular expression, for instance
.+, will try to match the biggest thing it possibly can. Greestia is sometimes referred to as
"maximal matching".

Greediness is also left to right. Each section in the reg®pression will be as greedy as it can
while still allowing the whole regular expression to matthassible. For example,

$_ = "The cat sat on the mat";

fe. *t(. *)(m. *v/;

print $1; # prints "cat sat on t"
print $2; # prints "he "
print $3; # prints "mat";

It is possible in this example for another set of matches twod he first expression «t could
have matchedat leaving sat on the to be matched by the second expressiorHowever, to do
that, we need to stop =t from being so greedy.

To make a regular expression quantifier not greedy, follamitth a question mark. For example?.
This is sometimes referred to as "minimal matching".

$_ = "The fox is in the box.";

I(f. *x)/; # greedy - $1 = "fox is in the box"
I(f. *=2x)/; # not greedy - $1 = "fox"
$_ = "abracadabra";
l(a. *a)/ # greedy -- $1 = "abracadabra"
l(a. =?a)l # not greedy - $1 = "abra"
l(a. *7?a)(. *a)/ # first is not greedy -- $1 = "abra"
second is greedy -- $2 = "cadabra"
l(a. *a)(. *7a)l # first is greedy -- $1 = "abracada"

second is not greedy -- $2 = "bra"

l(a. *=?a)(. =?a)l # first is not greedy -- $1 = "abra"
second is not greedy -- $2 = "ca"

Exercise

1. Write a regular expression that matches the first and lasiswon a line, and print these out.

114 Perl Training Australia (http://perltraining.com.au/)

More meta characters

Chapter 15. Advanced regular expressions

Here are some more advanced meta characters, which buitct@mes covered earlier.

Table 15-1. More meta characters

Meta character

Meaning

Cc X

Control character, i.6CTRL -X

0 nn

Octal character represented by

X nn

Hexadecimal character representechby

Lowercase next character

=

Uppercase next character

Lowercase untile

Uppercase untie

Quote (disable) meta characters uril

End of lowercase/uppercase/quote

> |m (O |C |™

Beginning of string, regardless of whether /m i
used.

End of string (or before newline at end),
regardless of whether /m is used.

IAbsolute end of string, regardless of whether /
used.

m is

search for the C++ computer language:

|C++] # wrong! regexp engine complains about the plus signs

JC\+H\+/ # this works
NQC++\E/ # this works too

search for "bell" control characters, eg CTRL-G

NG/ # this is one way
NOO7/ # this is another -- CTRL-G is octal 07
Nx07/ # here it is as a hex code

Read about all of these and more in perldoc perlre .

Working with multi-line strings

Often, you will want to read a file several lines at a time. Gdeis for example, a typical Unix
fortune cookie file, which is used to generate quotes fofdhtene command:

All language designers are arrogant. Goes with the territor Yoo I7)
-- Larry Wall in <1991Jul13.010945.19157 @netlabs.com >
%
Although the Perl Slogan is There’s More Than One Way to Do It, | hesitate

to make 10 ways to do something.
-- Larry Wall in
%

)

<9695@jpl-devvax.JPL.NASA.GOV >

Perl Training Australia (http://perltraining.com.au/) 115

Chapter 15. Advanced regular expressions

And don't tell me there isn't one bit of difference between nu Il and space,
because that's exactly how much difference there is. :-)
-- Larry Wall in <10209@jpl-devvax.JPL.NASA.GOV >
%
"And | don't like doing silly things (except on purpose).”
-- Larry Wall in <1992Jul3.191825.14435@netlabs.com >
%
: And it goes against the grain of building small tools.
Innocent, Your Honor. Perl users build small tools all day lo ng.
-- Larry Wall in <1992Aug26.184221.29627 @netlabs.com >
%
/+ And you'll never guess what the dog had */
[* in its mouth... */
-- Larry Wall in stab.c from the perl source code
%

Because . doesn’t match \n. [\0-\377] is the most efficient w ay to match
everything currently. Maybe \e should match everything. An d \E would
of course match nothing.)

- Larry Wall in <9847@ijpl-devvax.JPL.NASA.GOV >
%
Be consistent.
-- Larry Wall in the perl man page
%

The fortune cookies are separated by a line which contaitisngpbut a percent sign.

To read this file one item at a time, we would need to set thenikeli to something other than the
usuahn -in this case, we’'d need to set it to something like\n .

To do this in Perl, we use the special variable This is called the input record separator.

$/ = "\n%\n";
while (<>) {
$_ now contains one RECORD per loop iteration

}

Conveniently enough, settirgg to ™ will cause input to occur in "paragraph mode", in which two
or more consecutive newlines will be treated as the delimitadefinings/ will cause the entire file
to be slurped in.

undef $/;
$ = <>; # whole file now here

Changing $/ doesn’t just change how readline (<>) works. It also affects the chomp function,
which always removes the value of $/ from the end of its argument. The reason we normally
think of chomp removing newlines is that ¢/ is set to newline by default.

@It’s usually a very good idea to use local when changing special variables. For example, we
could write:

{
local $/ = "\n%\n";
$_ = <> # first fortune cookie is in $_ now

}

to grab the first fortune cookie. By enclosing the code in a block and using local, we restrict the
change of $/ to that block. After the block $/ is whatever it was before the block (without us

116 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

having to save it and remember to change it back). This localisation occurs regardless of how
you exit the block, and so is particularly useful if you need to alter a special variable for a
complex section of code.

Variables changed with local are also changed for any functions or subroutines you might call
while the local is in effect. Unless it was your intention to change a special variable for one or
more of the subroutines you call, you should end your block before calling them.

It is a compile-time error to try and declare a special variable using my.

Special variables are covered in Chapter 28 of the Camel book, (pages 127 onwards, 2nd

Ed). The information can also be found in perldoc perlvar .

Sinces/ isn’'t the easiest name to remember, we can use a longer naogérgytheEnglish module:

use English;
$INPUT_RECORD_SEPARATOR = "\n%\n"; # long name for $/
$RS = "\n%\n"; # same thing, awk-like

The English module is documented on page 884 (page 403, 2nd Ed) of the Camel book or
in perldoc English . You can find out about all of Perl’'s special variables’ English names by
reading perldoc perlvar .

Exercise

1. In your directory is a file calleéxercises/perl.txt which is a set of Perl-related fortunes,
formatted as in the above example. This file contains a graaymuotes, including the ones in
the example above and many many more. Use multi-line regufaessions to find only those
guotes which are from therl man page . You might also want to refresh your memory of
chomp() at this point. (Answerexercises/answers/fortunes.pl)

Regexp modifiers for multi-line data

Perl has two modifiers for multi-line data. and/m. These can be used to treat the string you're
matching against as either a single line or as multiple limégir presence changes the behaviour of
caret ¢), dollar () and dot ().

By default caret matches the start of the string. Dollar imasdhe end of the string (regardless of
newlines). Dot matches anything but a newline character.

With the/s modifier, caret and dollar behave the same as in the defadt bat dot will match the
newline character.

With the/m modifier, caret matches the start of any line within the gtraollar matches the end of
any line within the string. Dot does not match the newlinerabter.

Perl Training Australia (http://perltraining.com.au/) 117

Chapter 15. Advanced regular expressions

my $string = "This is some text
and some more text
spanning several lines";

if ($string =~ /~and some/m) { # this will match because
print "Matched in multi-line mode\n"; # ”~ matches the start o f any
} # line in the string

if ($string =~ /~and some/) { # this won't match
print "Matched in single line mode\n"; # because ~ only match es
} # the start of the string.

if($string =~ /AThis is some/) { # this will match
print "Matched in single line mode\n"; # (and would have with out
} # the /s, or with /m)

Prints "some text\nand some more text"
Note that . is matching \n here

if($string =~ /(some.
print "$1\n";

*text)/s) {

}

if($string =~ /(some.
print "$1\n";

text)) { # Prints "some text"

Note that . does not match \n

}

The differences between default, single line, and mulié-lnode are set out very succinctly by
Jeffrey Friedl in Mastering Regular Expressions (see ththeuReading at the back of these notes
for details). The following table is paraphrased from the on page 236 of that book.

His term "clean multi-line mode" describes one in which eafth, $ and. all do what many
programmers expect them to do. That iwill match newlines as well as all other characters, and
ands each work on start and end of lines, rather than the startatd#&the string.

Table 15-2. Effects of single and multi-line options

Mode Specified with matches... $ matches... Dot matches
newline

default neither/s nor/m [start of string end of string No

single-line /s start of string end of string Yes

multi-line /m start of line end of line No

clean multi-line |both/m and/s start of line end of line Yes

Modifiers may be clumped at the end of a regular expressiopefimrm a search using “clean
multi-line” irrespective of case your expression mightkdite this

/"the start. * end$/msi

and if we had the following strings

$stringl = "the start of the day
is the end of the night";

$string2 = "10 athletes waited,
the starting point was ready
how it would end

was anyone’s guess";

$string3 = uc($string2); # same as string 2 but all in upperca se

we’d expect the match to succeed with beihing2 andsstringd but not withsstringl

118 Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

Back references

Special variables

There are several special variables related to regulaesgjuns. The parenthesised names beside
them are their long names if you use the English module.

+ $&is the matched text (MATCH)

+ $ (dollar backtick) is the unmatched text to the left of the chat text (PREMATCH)

+ $ (dollar forwardtick) is the unmatched text to the right o timatched text (POSTMATCH)
+ $1,$2, $3, etc. The text matched by the 1st, 2nd, 3rd, etc sets of jeeses.

All these variables are modified when a match occurs, and earséd in the same way that other
scalar variables can be used.

my ($match) = m/~(\d+)/;
print $match;

or alternately...
m/MNd+/;
print $&;

match the first three words...

m/A\w+) (\w+) (\w+)/;
print "$1 $2 $3\n";

You can also usg1 and other special variables in substitutions:

$string
$string

"It was a dark and stormy night.";
~ s/(dark|wet|cold)/very $1/;

@When Perl sees you using PREMATCH ($*), MATCH ($&), or POSTMATCH ($'), it assumes that
you may want to use them again. This means that it has to prepare these variables after every
successful pattern match. This can slow a program down because these variables are
"prepared" by copying the string you matched against to an internal location.

If the use of those variables make your life much easier, then go ahead and use them. However,
if using $1, $2 etc can be used for your task instead, your program will be faster and leaner by
using them.

@If you want to use parentheses simply for grouping, and don’t want them to set a $1 style
variable, you can use a special kind of non-capturing parentheses, which look like (2: ...)

this only sets $1 - the first set of parentheses are non-capt uring
m/(?:Dr|Prof) (\w+)/;

The special variablesl and so on can be used in substitutions to include matchedhtéhe
replacement expression:

Perl Training Australia (http://perltraining.com.au/) 119

Chapter 15. Advanced regular expressions

swap first and second words
sifn(wH) (\w+)/$2 $1/;

However, this is no use in a simple match pattern, becgusad friends aren’t set until after the
match is complete. Something like:

print if m{(tw+) $1};
... will notmatch "this this" or "that that". Rather, it will match a sgicontaining "this" followed by
whatevers1 was set to by an earlier match.

In order to match "this this" (or "that that") we need to use ¢pecial regular expression meta
charactersi ,\2 , etc. These meta characters refer to parenthesised partaatth pattern, just as
$1 does, butvithin the same matctather than referring back to the previous match.

print if found repeated words starting with 't ie "this th is"
(note, this contains a subtle bug which you'll find in the ex ercise)
print if m{(t\w+) \1};

Exercises

1. Write a script which swaps the first and the last words oh &re.

2. Write a script which looks for doubled terms such as "baamgg) or "quack quack" and prints
out all occurrences. This script could be used for findinggraphic errors in text. (Answer:
exercises/answers/double.pl)

Advanced exercises

1. Make your swapping-words program work with lines thattstad end with punctuation
characters. (Answeexercises/answersffirstlast.pl)

2. Modify your repeated word script to work across line boanes (Answer:
exercises/answers/multiline_double.pl)

3. What about case sensitivity with repeated words?

Chapter summary

120

- Input data can be split into multi-line strings using theggakevariables/ , also known as
$INPUT_RECORD_SEPARATOR

- Thess and/m modifiers can be used to treat multi-line data as if it weranglsiline or multiple
lines, respectively. This affects the matching @nds , as well as whether or notwill match a
newline.

« The special variabless, $* and $ are always set when a successful match occurs.

Perl Training Australia (http://perltraining.com.au/)

Chapter 15. Advanced regular expressions

+ $1,$2, $3 etc are set after a successful match to the text matched liysheecond, third, etc sets
of parentheses in the regular expression. These shouldenigedutsidethe regular expression
itself, as they will not be set until the match has been sisfukes

- Special non-capturing parentheges) can be used for grouping when you don’t wish to set
one of the numbered special variables.

- Special meta characters such@as\2 etc may be usedithin the regular expression itself, to refer
to text previously matched.

Perl Training Australia (http://perltraining.com.au/) 121

Chapter 15. Advanced regular expressions

122 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I/O

In this chapter...

In this chapter, we learn how to open and interact with files.

Angle brackets

The line input operator

The line input operator is discussed in-depth on page 81 (page 53, 2nd Ed) of the Camel

book. You can read about the closely-related readiine function using perldoc -f readline .

We have encountered the line input operatorin situations such as these:

reading lines from STDIN (or from files on the command line)
while (<>) {
Process the line of input in $_

}

reading a single line of user input from STDIN
my $input = <STDIN>;

reading all lines from STDIN into an array
my @input = <STDIN>;

- In scalar context, the line input operator yields the nex bbf the file referenced by the filehandle
given.

- In list context, the line input operator yields all remaipiimes of the file referenced by the
filehandle. (Be careful when using this as you may use up alf giemory if the file is large).

- The default filehandle iSTDIN, or any files listed on the command line of the Perl script (eg
myscript.pl filel file2 file3).

Exercises

1. Use the line input operator to accept and print input frbenudser on a line-by-line basis. Hint:
you've been doing this all week.

2. Modify your previous script to usevaiile loop to get user input repeatedly, until they type "Q"
(or"g" - check outthec() anduc() functions by usingeridoc -f uc andperldoc f Ic)
(Answer:exercises/answers/userinput.pl)

Perl Training Australia (http://perltraining.com.au/) 123

Chapter 16. File 1/0

Opening a file for reading, writing or appending

124

The open() function is documented on pages 747-755 (pages 191-195, 2nd Ed) of the

Camel book, and also in perldoc -f open .

Theopen() function is used to open a file for reading or writing (amoraker things).

In brief, Perl uses the same characters as shell does fopgieations. That is:

« < says to open the file for reading
+ > says to open the file for writing

+ >> says to open the file for appending.

@If you need more control over how you open your files, check out the sysopen function by using
perldoc -f sysopen . Using sysopen is especially important if you're running with elevated
privileges, as it can help protect against dangerous race conditions. You can read more about
that on pages 571-573 in the Camel book (3rd Ed only).

Opening for reading
In a typical situation, we might us@en() to open and read from a file:

open(LOGFILE, " < /var/log/httpd/access.log");

The less than<) character used to indicate reading is assumed so we couddlggell have said:

open (LOGFILE, "/var/log/httpd/access.log");

However it is still always a good idea to explicitly open ydiles for reading by using the
character. This protects you from the cases where your filerfeas odd characters in it, suchas-
and| which all mean special things tpen.

Failure
You shouldalwayscheck for failure of arpen() statement:

open(LOGFILE, " < /var/log/httpd/access.log")
or die "Can't open /var/log/httpd/access.log: $!";

Attempting to read from or write to an unopened file may causspected results.

die is a Perl function which takes an error message and ternsittaeprogram displaying that
message to the user. In this example, the die statementh{veghadways true) is executed only if the
open statement does not return true, that is, if there wasranie opening the files! is the special
variable which contains the error message produced by sheyatem interaction.

Perl tries to be helpful when dying on errors and will appédradppropriate filename and line
number of your script to the end of the die message, with ainewlf you don’t want this behaviour,
end the die message with a newline)(character. For example:

Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I1/0

The following provides an error with file and line-number:
open(LOGFILE, "< $file") or die "Cannot open $file: $!";

Here the file and line-number are omitted.
open(LOGFILE, "< $file") or die "Cannot open $file: $1\n";

Make sure you don't do this by accident, and miss out on thmitrant information.

$! is documented in on page 669 (page 134, 2nd Ed) of the Camel book and also in perldoc

perlvar .

You can read more about die on page 700 (page 157, 2nd Ed) of the Camel book and also with
perldoc -f die .

@An alternative to explicitly checking whether open and other functions succeeded is to use the
Fatal module:

use Fatal qw(open close);
open(LOGFILE, "< $file"); # no need to check!

close(LOGFILE); # no need to check!
The Fatal module creates its own functions for the ones you have passed in, and tells Perl to
use those instead. These throw an exception (die) if the original function returns a false value.

Care should be taken when retroactively using Fatal on existing programs. It changes the
behaviour of the specified functions for the whole package, not necessily just the part you're
looking at.

For more information read perldoc Fatal .

Opening for writing and appending
We use> and>> to open files for writing:

Open file for writing
open(OUTFILE, " > /tmp/output”) or die $!;

Open file for appending
open(APPEND, " >> /tmp/out.log") or die $!;

When using> to open files for writing this wilkclobberany contents of your file> truncates the file
when it is opened, just as it does in shell. So even if you darite anything to the file, the original
contents will be lost upon opening.

Using > or >> will cause the files to spring into existence if they do notatty exist, so you don'’t
have to worry about how to create them before writing.

Perl Training Australia (http://perltraining.com.au/) 125

Chapter 16. File 1/0

Funny filenames

Be careful when trying to open a file whose name contains ctensthat might have special
meaning tapen() , in particular those that start or end wijtt{pipe), or begin with> or <, as these
may result inopen() not doing what you expect. Leading and trailing spaces aighored.

Under Perl 5.6.0 and above, a three-argument versiopeaf) exists. This version ofpen() treats
the filename literally, including special characters aracgs. You use it like this:

my $filename = "filename ending with spaces "

open(FILE, "<", $filename)
or die "Failed to open file: $filename for reading: $!";

while(<FILE >) {
Process the line of input in $_

}

The three argument version @fen is much safer than the two-argument version, especiallgtifrg
dealing with untrusted user input, as no special interficetas done on the filename. It's described
with the rest of thepen documentation.

For a safe file open for those who can’t upgrade to Perl 5.6, have a look at sysopen .

Information about sysopen can be found in perldoc -f sysopen and pages 808-810 (pages 194,
2nd Ed) of the Camel book.

Filehandles

The first argument we passdpen is a filehandle. We can use this to have access to the file for the
mode in which it was opened.

use Fatal qw(open close);

Open access.log for reading using LOGFILE as our filehandl e
open(LOGFILE, " <", "/var/log/httpd/access.log");

use the filehandle in the <> line input operator to read the
contents

while (<LOGFILE>) {
print if /perltraining.com.au/;

}

close LOGFILE;

open a new logfile for appending
open(SCRIPTLOG, " >>", "myscript.log");

print() takes an optional filehandle argument - defaults t o STDOUT
print SCRIPTLOG "Opened logfile successfully.\n";

close SCRIPTLOG;

Note that you should always close a filehandle when you'rstiigd with it (even though any open
filehandles will be automatically closed when your scrigtgx

126 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I1/0

Scalar filehandles

Under Perl version 5.6.0 and above, you can provide a scatfiedirst argument to theen
function. This means that your filehandles can have scopknatkes it easier to pass them to
subroutines and put into structures such as hashes and.awagre possible it is a good idea to
always use scalar filehandles.

use Fatal qw(open);

my $fh;
open($fh," <", "/path/to/file");

We can also declare the variable inside the call to open
open(my $out_fh, ">", "/path/to/other/file");

In versions before 5.6.0 you can do the same thing by usingiittandle module, but you need to
declare your intentions first:

use FileHandle;

my $fth = FileHandle->new; # $fh is now a FileHandle object.
open ($fh, " <", "Ipath/to/file") or die $!;

my $out_fh = FileHandle->new;
open ($out_fh, " >", "Ipath/to/other/file") or die $!;

You use scalar filehandles the same way as you use regular ones

while(<$th >) {
do something with each line of the file

}

print to open filehandle:
print $out_fh "Today is a good day!";

Or (to make the filehandle stand out more)
print {$out_fh} "Today is a good day!";

Using therileHandle module also works in Perl 5.6.0 and above, so if compatybilith older
versions of Perl is important to you, you should userikgiande module for scalar filehandles.

For more information segerldoc FileHandle and pages 895-898 (page 442-444, 2nd Ed) in the
Camel book.

Exercises

1. Write a script which opens a file for reading. Usehee loop to print out each line of the file.

2. Use the above script to open a Perl script. Use a regulaessipn to print out only those lines
not beginning with a hash character (i.e. non-comment)if{@sswer:
exercises/answers/delcomments.pl)

3. Create a new script which opens a file for writing. Write thet numbers 1 to 100 into this file.
(Hint: the numbers 1 to 100 can be generated by using tluperator egtoreach my $value
(1..100) {4) (Answer:exercises/answers/100count.pl)

Perl Training Australia (http://perltraining.com.au/) 127

Chapter 16. File 1/0

4. Create a new script which opens a log file for appendincai€ravhile loop which accepts
input from STDIN and appends each line of input to the log {#eswer:
exercises/answers/logdfile.pl)

5. Create a script which opens two files, reads input from tg ind writes it out to the second.
(Answer:exercises/answers/readwrite.pl)

Changing file contents

128

When manipulating files, we may wish to change their conténftexible way of reading and
writing a file is to import the file into an array, manipulate thrray, then output each element again.

It is important to ensure that should anything go wrong we'tdose our original data. As a result,
it's consideredest-practiceo write our data out to a temporary file and them move that theer
input file after everything has been successful.

a program that reads in a file and writes the lines in sorted o rder.
use Fatal qw(open close rename);

open(my Sinfile, " <", "file.txt");
my @lines = <$infle >; # Slurps all the lines into @Ilines.
close $infile;

@lines = sort @lines;

open temporary file to save our sorted data into
open(my $outfile, " >", "file.txt.tmp");

use print's ability to print lists
print {$outfile} @lines;
close $outfile;

we know that we were successful, so write over the original f ile

only move the file +after * the filehandle has been closed.
rename("file.txt.tmp", "file.txt");

You can learn more about Perl’s rename function with perldoc -f rename .

C Always remember to close the file before attempting to rename Failure to do this may result in
rename attempting to move or copy the file before all of the data has been written to it, or for the
rename to fail entirely on systems that don’t allow open files to be renamed.

Secure temporary files

Therile:Temp module creates a name and filehandle for a temporary file. &faeili assumption
is that any such temporary file will be a binary file. In this ex#de we’ll be using Perl’sinmode
function to mark it as a text file when needed. We’'ll discusseraboubinmode later in this chapter.

Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I1/0

use File:Temp gw(tempfile);
my ($tmp_fh, $tmp_name) = tempfile();

Set the file as a text-file on Win32 systems.
binmode($tmp_fh,"crlf’) if ($"O eq "MSWin32");

print {$tmp_fh} @lines;
close $tmp_fh;

only move the file +after » the filehandle has been closed.
rename($tmp_name, "file.txt");

TherFile:Temp module can also be used to create in-memory temporary fitegufired.

Looping over file contents

If you don’t need to manipulate all of the lines together ggample sorting) you ought to forgo the
reading things into an array and just loop over each line ti@oa to ensure, however, that your
original data cannot be lost if the program terminates uaetqully.

use Fatal qw(open close);

removes duplicated lines
open(my $infile, " <", "file.txt");
open(my $outfile, " >", "unique.txt");

my $prevline;

while(<$infile >) {
print {$outfile} $_ unless ($_ eq $prevline);
$previine = $_;

}

close $infile;
close $outfile;

Exercises

1. Theexercises/numbers.txt contains a single number on each line. Open the file for rgadin
increment the number by the current line number (eg the finstber will be incremented by 1,
the second by 2 and so on) and print the results to a second file.

2. Now that the above program is working, useame to save your changes back to the original
file name. Make sure you are closing your filehandle beforeingahe file! (Answer:
exercises/answers/increment.pl)

3. Open a file, reverse its contents (line by line) and writmitk to the same filename. For
example, "this is a line" would be written as "enil a si silkhéwer:
exercises/answers/reversefile.pl)

Perl Training Australia (http://perltraining.com.au/) 129

Chapter 16. File 1/0

130

Opening files for simultaneous read/write

Files can be opened for simultaneous read/write by puttingndront of the> or < sign.+< is
almost always preferable, as would overwrite the file before you had a chance to read from it

Read/write access to a file is not as useful as it sounds -epexmder special circumstances
(notably when dealing with fixed-length records) you casgfully write into the middle of the file
using this method, only onto the end. The main use for reatd\access is to read the contents of a
file and then append lines to the end of it.

Example: Reading a file and adding to the end.

Program that checks to see if $username appears in the file
adds $username to the end, if not.

use Fatal qw(open close);

my $username = <STDIN>;
chomp $username;

open(my $users_fh, "+<", "users.txt");

my $found;
while(<$users_fh >) {
chomp;

case insensitive matching
if(lc($_) eq Ic($username)) {
$found = 1;
last;

}

We'll be at the end of our file if $found isn't set
unless($found) {
print {$users_fh} "$username\n”;

}

close $users_fh;

The small print

+< puts you at the start of the file. Note that it won't create a filnif the file you're dealing with
does not exist (you'll just get an error that the file doesrisg. If you start writing before you've
reached the end of the file, you will overwrite character$at file (from that point). Even if you're
dealing with fixed-length records and think you know what’y@doing, this is often still a bad idea.

+>> initially puts you at the end of the file. It will create a nevefif necessary and will not clobber
an old one. It allows you to read at any point in the file, butaltes will always go to the end.

Buffering

When Perl wants to read a file from disk, it asks the operatistesn to go fetch it. It would be very
slow if Perl had to ask the operating system for each and éeryso typically it asks for a large
chunk (a block) and then holds than in memory, until your paoghas used it all and needs more, or
has finished executing. This is called input buffering.

For the same reasons, Perl also buffers its output. Thatsiayés up the data that you want to print
to a file or STDOUT and only prints it when it has enough. Oneehtiaffer is full, an end of file
character is seen or the filehandle is closed, therfliighedto the disk. This is why it is essential

Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I1/0

that we close the relevant filehandle before copying a fila wi¢::copy . Data going to the screen
rather than a file will be sent upon seeing a newline.

You can see the effects of buffering with the following coitresgercises/buffering.pl):

foreach my $number (1..5) {
print "$number "
sleep(1);

}

STDERR, on the other hand, is never buffered. When you miSfRDERR your content appears on
the screen or in the file immediately. We can also turn offdirfig to our other filehandles when
necessary. To do so, we can use Ped’siandle module.

use 10::Handle;

Turn on automatic flushing for STDOUT
STDOUT->autoflush(1);

Flush $some_filehandle’'s buffer, but don't turn on autofl ush
$some_filehandle->flush();

Turn on automatic flushing for $fh
$fh->autoflush(1);

Turn off automatic flushing STDOUT (now it'll be buffered a gain)
STDOUT->autoflush(0);

Since both print and readline £) are buffered, you shouldot use them for editing a file in-place. If
you must work with in-place edits, use the lower level fuorti such asysseek() , syswrite() and
sysread() . Perlalso has a switch, for more useful in-place modification of files. Thes&cepts
are not covered in this course.

For more information about open including simultaneous read/write, see perldoc

perlopentut . Also read pages 747-755 (pages 191-195, 2nd Ed) of the Camel book.

For information about the -i option to Perl read perldoc perlrun and pages 495-497 (page 332,
2nd Ed) of the Camel book.

Read the documentation in perldoc IO::Handle for the standard way in Perl to control buffering
on a per-filehandle basis.

An excellent tutorial on buffering, its advantages and disadvantages, and how to manipulate it
from Perl can be found in Mark Jason Dominus’ excellent article on Suffering from Buffering
available from his Perl FAQs (http://perl.plover.com/FAQs/Buffering.html).

Opening pipes

If the filename given tepen() begins with a pipe symboj |, the filename is interpreted as a
command to which output is to be piped, and if the filename evitlsa | , the filename is to be
interpreted as a filename which pipes input to us.

Perl Training Australia (http://perltraining.com.au/) 131

Chapter 16. File 1/0

We can use pipes to read information from any process we esugxon our system. Once the
command is open, we can read from the resulting filehandleisame way we would read from
any other file. In the example below, we use secure skel) (o read a file on a remote machine.

#!/usr/bin/perl -w
This program allows us to read a file from another machine

using secure shell. This is most useful if we can login witho ut
a password (eg, established keys).
use strict;

use Fatal qw(open close);

Process our command line arguments, and complain if we don’ t
have both a host and filename.
my ($host, $file) = @ARGV;
unless ($host and $file) {
die "Usage: $0 host filename\n;

}
open (my $ssh, "ssh $host cat $file |");

while(<$ssh >) {
We can process the file in any way we like here.
In this particular case, we’ll simply print it to
our STDOUT.

print;
}

Here’s an example which writes to teert command, which is a standard utility on both Windows
and Unix systems. Even though Perl has its @art function, the external command is very good at
dealing with large amounts of data in a memory-efficient neginn

use Fatal qw(open close);

Open our external sort command.
open (my $sort_fh, "|sort");

Our friends will be printed in sorted order.

foreach my $friend (qw/Jacinta Damian Kirrily Paul/) {
print {$sort_fh} "$friend\n";

}

close $sort_fh;

If you're interested in reading more about inter-process communication, including pipes,

signals, sockets and the like, check out perldoc perlipc .

Exercises

1. Modify the second example above (provided for yoes@g:ises/sort_starter.pl in your
exercises directory) to accept user input and print oustreed version.

2. Change your script to accept input from a file usipen() (Answer:
exercises/answers/sort.pl)

3. If you are using a Unix system: change your script to pip@iput through thatrings
command and thesort. Now if you specify a file that is not a text file, it will only soaind

132 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I1/0

display printable strings. Try running this ovesr/bin/per! . (Answer:
exercises/answers/strings.pl)

File locking

File locking can be achieved using tiek() function. This can be used to guard against race
conditions or other problems which occur when two (or moregpsses want to access the same file
at the same time.

flock() is documented on page 714 (page 166, 2nd Ed) of the Camel book, or use perldoc

-f flock to read the online documentation.

flock is Perl's portable file-locking mechanism, and works on nep&rating systems (and produces
a fatal error on those which it does not). The locks settday are advisory only, which means that
a process that chooses not to ags can (and will) ignore any locks in placck can only lock
entire files, not individual records. Depending upon yotuggiock may or may not work over

NFS.

using flock

use Fcntl :flock’; # import LOCK_ * constants
flock(FILEHANDLE, LOCK_EX); # exclusive (write) access
flock(FILEHANDLE, LOCK_SH); # shared (read-only) access

Asflock only works onfilehandlesinstead of filenames, you have to open the file iefbreyou
try to lock it. It's important to make sure that you open the fibr writing, if you intend to write to it,
and that you don'’t clobber the contents of the file when domdis is a good use ef<. Closing a
locked file releases any locks the process holds upon it.ilgisod because it means that if your
process exits unexpectedly all locks it held are releasddad#rer processes may then go forward
with their locks.

In the following example, we're locking a file before re-vimi it. The exclusive lock stops any other
process from holding a lock on the file while we perform ourragiens.

use Fcntl :flock’; # import LOCK_ * constants
use Fatal qw(open close truncate flock);

Open file for read and write
open my $file_fh, "+<", $file;

Lock the file for writing (exclusive lock)
flock($file_fh, LOCK_EX);

At this point we have exclusive access to the file.
Wipe previous process’ details

truncate($file_fh, 0);

Write to the file, or perform other operations as needed her e...
print {$file_fh} $data;

close $file_fh; # Closing the file releases the lock as well.

Perl Training Australia (http://perltraining.com.au/) 133

Chapter 16. File 1/0

flock will wait indefinitely until the lock is granted, however i return early if interrupted by a
signal or other event. It's important to ensure that flockmestrue to be sure that you have the lock
you requested. It is possible to makek non-blockingas follows:

use Fcntl :flock’; # import LOCK_ * constants
flock(FILEHANDLE, LOCK_EX | LOCK_NB); # non-blocking excl usive lock
flock(FILEHANDLE, LOCK_SH | LOCK_NB); # non-blocking shar ed lock

All attempts to get amon-blockingock return immediately with eithdrue for success (the lock was
obtained) offalsefor failure (the lock was not obtained).

For an excellent introduction on using flock , the slides from Mark Jason Dominus’ File

Locking Tricks and Traps make excellent reading. They can be found at
http://perl.plover.com/yak/flock/.

Handling binary data

If you are opening a file which contains binary data, you phbpdon’t want to read it in a line at a
time usingwhile (<>) { } , as there’s no guarantee that there will be any line breattsidlata,
and we'll probably end up with very uneven chunks.

Instead, we can usead() to read a certain number of bytes from a filehandle. Howedork we
do that, we should call theénmode() function on the filehandle, so that Perl knows that we’'ll be
dealing with a binary file. This means Perl won't try to do argnsformations of input based upon
the operating system or locale where your program is running

binmode() must be called on the filehandle before any corresponding@ldt’s best to call it
immediately after you open the file.

You can learn more about read() by reading page 768 (page 202, 2nd Ed) of the Camel

book or perldoc -f read .

You can learn more about binmode() by reading page 685 (page 147, 2nd Ed) of the Camel
book, or perldoc -f binmode .

read() takes the following arguments:

« The filehandle to read from
« The scalar to put the binary data into
« The number of bytes to read

« The byte offset to start from (defaults to 0)

134 Perl Training Australia (http://perltraining.com.au/)

Chapter 16. File I1/0

#!/usr/bin/perl -w

Prints a random image

use strict;

use Local:File gqw(random_image);
use Fatal qw(open close);

use CGl,

Select a random image.
my $image = random_image();

Open image file for reading
open(my $image_fh, "<", $image);

Call binmode on our filehandles
binmode STDOUT;
binmode $image_fh;

Print file headers
print CGl->header(-type => "imagel/jpg");

Print file contents to STDOUT
my $buffer;
while (read $image_fh, S$buffer, 1024) {
print $buffer; # Prints to STDOUT
}

close $image_fh;

Chapter summary

« Angle bracketsc> can be used for simple line input. In scalar context, theyrrethe next line; in
list context, all remaining lines; the default filehandlsi®IN or any files mentioned in the
command line (i@@ARGV

« Theopen() andclose() functions can be used to open and close files. Files can bedfien
reading, writing, appending, read/write, or as pipes.

- File locking can be achieved usifigek()

- Binary data can be read using tleed() function. Thebinmode() function should be used to
ensure platform independence when reading binary data.

Perl Training Australia (http://perltraining.com.au/) 135

Chapter 16. File 1/0

136 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Directory interaction

In this chapter...

In this chapter, we learn how to work with directories in vais ways.

The globbing operator

The filename globbing operator is documented on page 83 (page 55, 2nd Ed) of the Camel

book. You can also read about it with perldoc perlop .
Theglobbingoperator looks the same as the line input operator, but ity rpaite different.

If the angle brackets have anything in them other than a fildleeor nothing, it will work as a
globbing operator and whatever is between the angle braekktbe treated as a flename wildcard.
For instance:

my @files = <*.txt >;

The filename glob.ixt is matched against files in the current directory, then eithey are
returned as a list (in list context, as above) or one scalatiate (in scalar context).

Perl’s globs operate the same way as they do in the UNIX A-dbeh’t worry if you don’t know
C-shell, the basic pattern matching operators (suchaasl?) have the same behaviour as just about
any other shell that you may have used.

If you get a list of files this way, you can then open them in tamnd read from them.

while (my $filename = <k xt >) {
open (my $in_fh, * <", $filename) or die ("Can’'t open $filename: $!");

Read from the file

close $in_fh;

}
Theglob() function behaves in a very similar manner to the angle brtaglikébing operator.
my @files = glob(" *.txt");
foreach my $file (glob(" = txt") {
Process $file

}

Theglob() is considered much cleaner and better to use than the aregt&dts globbing operator.

@When using glob , you can combine more than one pattern in order to get a wider selection of
files. For example, to get all the .txt and .pl files you can write:

glob(" *.txt *.pl");

Perl Training Australia (http://perltraining.com.au/) 137

Chapter 17. Directory interaction

Like all functions, you can read more about glob using perldoc -f glob

Exercises

1. Use the file globbing function or operator to find all Perifts in your current directory and
print out their names (assuming they are named in the fosm) (Answer:
exercises/answers/findscripts.pl)

2. Use the above example of globbing to print out all the Reipts one after the other. You will
need to use thepen() function to read from each file in turn. (Answer:
exercises/answers/printscripts.pl)

Finding information about files

The file test operators are documented fully in perldoc -f -x .

We can find out various information about files by using filé tggerators and functions such as
stat()

Table 17-1. File test operators

Operator Meaning

-e File exists.

-r File is readable

-w File is writable

X File is executable

-0 File is owned by you

-z File has zero size.

-s File has nonzero size (returns size).

-f File is a plain file (as opposed to a directory,
symbolic link, device etc.)

-d File is a directory.

-l File is a symbolic link.

-p File is a named pipe (FIFO), or Filehandle is a
pipe.

-S File is a socket.

-b File is a block special file.

-c File is a character special file.

138 Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Directory interaction

Operator Meaning

-t Filehandle is opened to a tty.

-u File has setuid bit set.

-g File has setgid bit set.

-k File has sticky bit set.

-T File is a text file.

-B File is a binary file (opposite of -T).

-M Days since file last modified, when script started.
-A Same for access time.

-C Same for inode change time.

Here’s how the file test operators are usually used:

#!/usr/bin/perl -w
use strict;

if(not -e "config.txt") {
die "Config file doesn't exist";

}

Thestat() function returns similar information for a single file, istiform.istat) ~ can also be
used for finding information about a file which is pointed togbgymbolic link. If you've used these
functions in C or other languages, then you'll probably findrh somewhat familiar in Perl. Check
outperldoc -f stat to see the format this data is returned in and how to make uise of

C The file test operators expect the file you're testing to be in the current working directory. If this
is not the case, make sure you prepend a path to the file before doing your test.

Multiple file tests

Occasionally it is desirable to perform several tests ors#imee file at the same time. Perhaps you'd
like to check that a file is both readable and writable. It isgible to perform your test like this:

it (r $file && -w $file) {
.
}

but that involves two separate tests which both take time.filéa might also change between the
tests (which is why file tests are almost always a bad ideacurig situations).

Perl caches the result of file tests in a special filehandledallunderscore). Performing tests on
this filehandle can often avoid subsequent system callgltireg in a slight performance gain.

if(r $file && -w) {
..
}

There are some caveats on when th#ehandle can be used with certain operators such asnd
-t . To find out more about these and to learn more about file testbqrs reagerldoc -f -x.

Perl Training Australia (http://perltraining.com.au/) 139

Chapter 17. Directory interaction

Exercises

1. Use the file test operators to print out only files from aawey which are "normal* files, i.e. not

directories, symbolic links or other oddities. (Answetgrcises/answers/normaldirlist.pl)
2. Write a script to find zero-byte files in a directory. (Answeercises/answers/zerobyte.pl)
3. Write a script to find the largest file in a directoeyercises/answers/largestfile.pl)

4. Write a script which asks a user for a file to open, takes thput from STDIN, checks that the
file exists, then prints out the contents of that file. (Answer
exercises/answers/fileexists.pl)

Changing the working directory

140

The functionchdir - allows you to change your program’s working directory. Allative file access
from that point on will use the new directory. Note that thiednot change the working directory of
the calling process.

use Fatal qw(chdir);

Archive log files

my $tar = "“/bin/tar";

my $date = "2007-01-01";

my $directory = "/var/log/apache/";

chdir($directory); # Will die on failure, because of use Fat al
Get all files in this directory

my @files = glob(" *.log. *");

system("$tar -czf weblogs.$date.tgz @files") if @files;

We learn how to check whether system worked later in the cour se.

You can find more about chdir by reading perldoc -f chdir or page 688 (page 148, 2nd Ed)

in the Camel book.

To find out what your current working directory is, we can use the cwd module:

use Cwd,;
my $current_working_directory = getcwd();

Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Directory interaction

Recursing down directories

The File::Find module is documented on pages 889-890 (page 439, 2nd Ed) or more fully in
perldoc File::Find .

The built-in functions described above do not enable yowasilgrecurse through subdirectories.
Luckily, theFile::Find module is part of the standard library distributed with Perl

FilexFind emulates Unix’dind command. It takes as its arguments a subroutine to exeaute fo
each file found, and a list of directories to search. Notetthptss a reference to a subroutine we
prefix the name of the subroutine with. In our example below, this i&wanted .

#!/usr/bin/perl -w
use strict;
use File::Find;

print "Enter the directory to start searching in: "
chomp(my $dir = <STDIN>);

find takes a subroutine reference and the directory to star t working from.
find (\&wanted, $dir);

sub wanted {
if(\.pl$/) { # See if it's a .pl file
print "$File::Find::name\n”; # Print the current file name

}
}

For each file found, certain variables are set.

- $_is setto the name of the current file.
+ $File::Find::dir is set to the directory that contains the file.

 $File::Find::name contains the full name of the file, i.gFile::Find::dir/$_

FiIe::Find automatically changes your current working directory to the same as the file you are
currently examining. Thus there’s rarely a need to use $File::Find::dir . If all you want to do is
process the file regardless of its location on the file system you can simply open the file using
the name in $_. This behaviour can be turned off if desired, see perldoc File::Find for further
information.

File::Find::Rule

Some people find the call-back interfacerte::Find difficult to understand. Furthermore, storing
both your rules and your actions in the call-back subrottides a lot of detail from someone
glancing over your code. As a result, an alternative exailedFile::Find::Rule

The below traverses the directory trees framrcand returns the filenames for files endingniip3
or.ogg Which are greater than 100Kb and haven't been accessed &araymore. We can then
work with that list as we see fit.

Perl Training Australia (http://perltraining.com.au/) 141

Chapter 17. Directory interaction

use File::Find::Rule;
my $YEAR_AGO = time() - 365 * 24 » 60 * 60; # Year ago in seconds
my $SIZE = 100_000; # 100k bytes

my @old_music = File::Find::Rule->file()
->name (' *.mp3’, ' *.009Qg’)
->atime("< $YEAR_AGO")
->size ("> $SIZE")
->in (@ARGV);

Do something with @old_music files

You can read more about File::Find::Rule on CPAN

(http://search.cpan.org/perldoc?File::Find::Rule).

Exercises

Use eithefFile:Find Ofr File::Find::Rule for the following exercises.

1. Write a program which print outs the names of plain texsfdaly (hint: use file test operators).
A File::Find starter can be found iexercises/find.pl while aFile::Find::Rule starter
can be found irexercises/findrule.pl

2. Now use it to print out the contents of each text file. Yoptibbably want to pipe your output
throughlessso that you can see it all. (Answeiercises/answers/find.pl)

opendir and readdir

142

opendir() is documented on page 755 (page 195, 2nd Ed) of the Camel book. readdir() is

on page 770 (page 202, 2nd Ed). Don'’t forget that function help is also available by typing
perldoc -f opendir or perldoc -f readdir

We can also open directories for access by usinggb&lir) function. Once a directory is open,
we can read file names from it using tleeddir() function.

To read the contents of files in the directory, you still nedpen each one using thgen()
function.

$ENV{HOME} stores the home directory on Unix platforms, us e
SENV{HOMEPATH} for MS Windows

opendir(HOMEDIR, $home) or die "Can't read dir $home: $!";

my @files = readdirf(HOMEDIR);

closedir HOMEDIR;

Perl Training Australia (http://perltraining.com.au/)

Chapter 17. Directory interaction

foreach my $file (@files) {
Skip over directories and non-plain files (eg devices)
next unless -f "$home/$file";

open(THISFILE, " <", "$home/$file") or die "Can't open file $home/$file: $!";
Read from the file...

close THISFILE;

The HOMEDIRIN the previous example is a directory handle not a filehandle, even though they
look the same. Attempting to use a directory handle as a filehandle (or the opposite) will result in
an error.

Scalar directory handles

Under Perl 5.6.1 and above you can provide a scalar as themargtoreaddir . This allows you to
have scalar directory handles which have scope and makasiérdor you to pass them to
subroutines or include them in hashes and arrays. Justditaerdilehandles, these are the preferred
option if you can use them.

my $homedir;
opendir($homedir, $home) or die "Can't read dir $home: $!";
my @files = readdir($homedir);

Exercises

1. Useopendir() andreaddir() to obtain a list of files in a directory. What order are they in?

2. Use thesort() function to sort the list of files asciibetically (Answer:
exercises/answers/dirlist.pl)

glob and readdir

There are some major differences betwgien() andreaddir() . glob() is not as fast but gives
you flexibility over which filenames you get baakob(* +.c®) for example, returns only files with
the ".c" extensionglob() also gives you back filenames in asciibetical order, wheeaasir gives
you back the files in whatever order they're stored in therirgkrepresentation of your system.

glob("some/path/ «") will return filenames with path intact whereas readdir weliurn only the
filenames of the files in the directory.

The last difference between these is their behaviour withites. For example.bashre"
glob(* ") will not return these files (althougfob(". =) will), whereaseaddir() will always

return " " files.

Perl Training Australia (http://perltraining.com.au/) 143

Chapter 17. Directory interaction

Table 17-2. Differences between glob and readdir

glob readdir

Slower Faster

Allows you to filter filenames Gives you all flenames

Returns files in asciibetical order Returns files in file-system order
Returns filename with path intact Returns filename only

Does not return dot files when called as Returns all filenames

glob(* =" (althoughglob(* » .+ does).

rewinddir

We can rewind the current position of the directory handiektia the beginning by using the
rewinddir ~ function.

use Fatal qw(open close opendir rewinddir);

opendir(my $home_dh, $directory);

foreach my $filename (readdir($home_dh)) {
next unless -f "$directory/$filename";
open(my $plainfile, " <", "$directory/$filename);
Read from the file...

}

rewinddir $home_dh;
Now we can read through our directory contents again...
if we wish to.

Unfortunately this is rarely as useful as you might at firgtkhrewinddir ~ does not refresh the
directory listing when it rewinds. To see whether the diegtisting has changed since your
program started you'll have to close the directory and redpe

You can find more about rewinddir by reading perldoc -f rewinddir or page 777 (page 208,

2nd Ed) in the Camel book.

Chapter summary

144

- Angle brackets can also be used as a globbing operator ifisgybther than a filehandle name
appears between the angle brackets. In scalar contextisaghe next file matching the glob
pattern; in list context, returns all remaining matchingdil

- File test operators attat() can be used to find information about files.

« Theopendir() ,readdir() andclosedir() functions can be used to open, read from, and close
directories.

- TheFile::Find module can be used to recurse down through directories.

Perl Training Australia (http://perltraining.com.au/)

Chapter 18. System interaction

In this chapter...

In this chapter, we look at different ways to interact witk tiperating system. In particular, we
examine theystem() function, and the backtick command execution operator. M laok at
security and platform-independence issues related togh®ithese commands in Perl.

system()

Thesystem() function allows an external command to be executed. Thishcand will inherit

Perl’s standard filehandles (STDIN, STDOUT and STDERR) amatltontrol of the console until it
terminates. This means thgstem() can be used to launch interactive commands such as editors if
desired. Perl will wait for the command specified to termértagfore continuing:

Open a file for the user to edit.
system('vi somefile.txt’); # Or 'notepad somefile.txt’

Read the contents of the file once the user has finished.
open(my S$input_fh, '<’, 'somefile.txt’) or die "$!";

Theexec()function works in a similar way, but on success your prograraplacedwith the
command specified. This means teaec()never returns on success. Téxec()function is most
useful when writing wrapper scripts that wish to establigiedain state before executing another
program.

If the command specified bystem() could not be run the error message will be available via the
special variable! . This value is not set if the command can be run but fails dunimtime. The
return status of the command can be found in the specialblasia, which is also the return value
of system() . This value is a 16-bit status word which needs to be unpattkbd useful, as
demonstrated in the example below.

system("/path/to/some/command");
if ($?) { # A non-zero exit code means failure
-1 means the program didn't even start!
if($? == -1) {
print "Failed to run program: $\n";
} else {
print "The exit value was: " . ($? >> 8) . "\n";
print "The signal number that terminated the program was: "
. ($? & 127) . "\n%
print "The program dumped core.\n" if $? & 128;

Just likeopen the traditional form of callingystem andexec have security issues due to shell
expansion. For example consider the following code:

Perl Training Australia (http://perltraining.com.au/) 145

Chapter 18. System interaction

146

print "Please give me a file you want to see: "
my $filename = <>; # lets pretend: $filename="fred; rm -rf /home/pjf;"

chomp($filename);
system("cat $filename");

In this case, due to shell expansion, the shell will recdieecommands:

cat fred
rm -rf /home/pjf

and if our program had sufficient permissions to delete pise directory, it would.

As a result, there is another, safer, formsgfiem andexec that bypasses the shell. If you give
system Orexec a listit assumes that the first element is the command to éxeand every other
elementis an argument to that command. These argumentetgrassed to the shell, and so shell
expansion will not occur. So:

system(’cat’, ’ * . txt);

will give the"«.ixt* filename tocat rather than all files with axt extension. This is essential in
cases like the above where the command may be passed in freen. druthis case, if the file "*.txt"
does not exist then we’ll receive an non-zero return codecHails and returns false only if the
command (in this caseat) does not exist. If the file does not exist, the user will reeeat’s error
message.

It's always possible to use Perfgb function to expand filenames for us, without shell interi@mt

system(’cat’, glob(’ *.txt’));

IPC::System::Simple

ThelPC::System::Simple module (available from the CPAN) takes the hard work out ahing
shell commands:

use IPC::System::Simple qw(run);
run("some_command");

Therun function will execute the command provided and check theltel§ the command fails to
start, dies from a signal, dumps core, or returns a non-zérstatus, thempc::System::Simple

will throw an exception. Unless you take steps to prevemtfigilure from this command will cause
your program to die with an error. If you want to capture th®eryou can do so:

The ’eval’ block allows us to capture errors, which

are then placed in $@. |If any of the commands below
fail, the ’eval’ is exited immediately. This means if

we fail to backup the files, we won't delete them.

eval {
run(’backup_files’);
run('delete_files’);
3
if $@) {
warn "Error in running commands: $@\n";
}

Perl Training Australia (http://perltraining.com.au/)

Chapter 18. System interaction

You can also useC::System::Simple to execute commands that can return a range of acceptable
exit values:

use IPC::System::Simple qw(run);

Run a command, insisting it return 0, 1 or 2:
run([0,1,2], "some_command");

Run a command and capture its exit value:
my $exit_value = run([0,1,2], "some_command");
Specify return values using '.." notation:

my $exit_value = run([0..2], "some_command");

Just like regulagystem , therun command uses the standard shell when running a single codiman
or invokes the command directly when called in a multipleuangnt fashion:

Run ’'cat *.txt' via the shell.
run(’cat * txt');

Run ’'cat’ on the file called ’ =.txt', bypassing the shell.
run(’cat’,’ *.ixt');

Run ’cat’ on all files matching ’ *.txt', bypassing the
shell.

run(’cat’,glob(’ * . txt)));

You can read more about IPC::System::Simple at

http://search.cpan.org/perldoc?IPC::System::Simple

*nix exercise

1. Write a script to ask the user for a username on the system perform théinger command to
see information about that user. (Answetrcises/answers/finger.pl)

MS Windows exercise

1. Write a script to ask the user for a filename on the systeran@pe nominated file in Notepad
usingsystem (Answer:exercises/answers/notepad.pl)

Using backticks

Single quotes can be used to specify a literal string whichbeaprinted, assigned to a variable, et
cetera. Double quotes perform interpolation of variabtes@ertain escape sequences such de
create a string which can also be printed, assigned, etc.

Perl Training Australia (http://perltraining.com.au/) 147

Chapter 18. System interaction

148

A new set of quotes, calldoackticks can be used to interpolate variables then run the resultant
string as a shell command. The output of that command can@@ninted, assigned, and so forth.

Backticks are the backwards-apostrophe characjevtfich appears below the tilde)(next to the
numberl on most keyboards.

Just as thg() andqq() functions can be used to emulate single and double quotesaaed/ou
from having to escape quotes that appear within a stringgdiuévalent functiorx() can be used to
emulate backticks.

In this course we tend to use gx() because it's much harder to confuse gx() with plain old
single quotes. Using gx() also avoids the problem that in some font sets both single quotes and
backticks look exactly the same.

Backticks are different to thgstem() command, in that they capture the output of the command
they execute, as opposed to passing it through to the user.

When called in a scalar context backticks return the outptiteocommand they execute as a string
with possibly embedded newlines. When called in a list cdantae output is returned as a list with
each separate line of output being a new list element.

#!/usr/bin/perl -w
use strict;

Backticks capture the output of the process they run. Here,
we capture the output of the echo command.

my $greeting = gx(echo Hello World);

$greeting now contains the string "Hello World\n"

System runs a command without capturing the output, instea d it's

passed straight through. The following line uses the echo c ommand
to print a greeting.

system("echo Hello World");

The return status of commands called by using backticks eatetermined by examinirgp in the
same way as thgstem() example above.

Backticks and the gx() function are discussed in the Camel book on page 80 (pages 52 and
41, 2nd Ed) or in perldoc perlop .

*Nix exercises

1. Modify your earlier finger program to use backticks ingteésystem() (Answer:
exercises/answers/backtickfinger.pl)

2. Change it to usex() instead (Answerexercises/answers/gxfinger.pl)

3. The Unix commanevhoami gives your username. Since most shells support backtioksggn
typefinger ‘whoami* to finger yourself. Use shell backticks inside yau(statementto do
this from within your Perl program. (Answesxercises/answers/qxfinger2.pl)

Perl Training Australia (http://perltraining.com.au/)

Chapter 18. System interaction

MS Windows exercises

1. Modify your earlier program to take a directory path frdme tiser. Use backticks to execute the
DIR command on that path and list out the files in that direct@gs(ver:
exercises/answers/backtickdir.pl)

2. Change it to usex() instead.

3. Time permitting: reverse sort the directory listing ants.

Platform dependency issues

Note that the examples given above will not work consisyentl all operating systems. In particular,
the use obystem() calls or backticks with Unix-specific commands will not warkder Windows
NT, MacOS, etc. Slightly less obviously, the use of bacldick NT can sometimes fail when the
output of a command is sent explicitly to the screen rathem theing returned by the backtick
operation.

To understand more about how to make your Perl programs portable, read perldoc perlport .

Security considerations

C This section is not intended as a comprehensive guide to Perl security, rather it is here to show
some of the in-built security features that Perl has available. Even peridoc perlsec ~ does not give
you the whole picture, it just gives you some hints.

The ability to write secure programs is one that is learnt over many years of experience. It's
always a good idea to have someone well rehearsed in security and your programming
environment to audit your code in case you have missed anything. As well as training, Perl
Training Australia also offers security and privacy auditing services.

Perl Training Australia offers a course in Perl Security that covers many common attacks and
mistakes, and how they can be prevented in Perl.

Many of the examples given above can result in major sectisikg if the commands executed are
based on user input. Consider the example of a simple finggr@m which asked the user who they
wanted to finger:

#!/usr/bin/perl -w
use strict;

print "Who do you want to finger? "

my $username = <STDIN>;
print gx(finger $username);

Perl Training Australia (http://perltraining.com.au/) 149

Chapter 18. System interaction

Imagine if the user’s input had beej cat /etc/passwd , Or worse yetpjf; rm -rf / . The
system would perform both commands as though they had béeredrinto the shell one after the
other.

A further, not so obvious problem, can be seen when we askchhger program are we
calling?". If our program caller has changed 6BKV{PATH} then it is very possible that it's not the
usual systenfinger found in/usrbin/ . It could instead be a maliciotdisger program designed
to exploit our program'’s privileges.

Luckily, Perl's-T flag can be used to check for unsafe user inputs.

#!/usr/bin/perl -wT

Documentation for taint checking can be found by reading the perldoc perlsec , or on pages

557-568 (page 356, 2nd Ed) of the Camel book.

-T stands for "taint checking". Data input by the user is com®d "tainted" and until it has been
modified by the script, may not be used to perform shell contdaan system interactions of any
kind. This includes system interactions suclv@s\() , chmod() , and any other built-in Perl function
which interacts with the operating system.

C In versions of Perl prior to 5.8.0 files opened for both reading and writing using "+<" were not
checked for tainted filenames.

C Taint checking will not occur on filenames where the file is only being opened for reading. This
is due to historical reasons. Good programming practice would have you untaint these filenames

anyway.

The only thing that will clear tainting is referencing suirggs from a regexp match. Here’s an
example.

#!/usr/bin/perl -Tw
use strict;

$ENV{PATH} = "/bin:/usr/bin"; # Taint requires we set our pa th.
print "Who do you want to finger?\n";

my $username = <STDIN>;

chomp($username);

Check $username to make sure it's clean, then finger.

if ($username =~ /(\W{1,8)$/) {

$1 is the contents of the first set of
parentheses in the regexp.

print gx(finger $1);
} else {

print "That was not a valid usernamel\n";

}

150 Perl Training Australia (http://perltraining.com.au/)

Chapter 18. System interaction

@Make sure you remember to check that the regular expression to untaint your variable
succeeded. In the case above we only have one regular expression, so $1 will either be set by
the match or will be undefined. Nevertheless we still explicitly tested the match for success. This
means that our code won't break if we add any regular expressions before the code used above.

You can also untaint data by capturing the match in a listexdnt

Check $username to make sure it's clean
my ($safeuser) = ($username =~ /M(\w{1,8})$/);

safeuser is now either undefined if the match failed or
the value of $1 if the match succeeded.
if ($safeuser) {
print gx(finger $safeuser);
} else {
print "That was not a valid usernamel\n";

}

Note that you'll have to explicitly set the environmerisTHvariable (found irtBENV{PATH}) to
something safe (likausrbin) as well. This variable affects where the shell looks foreoth
executable programfinger is found injusrbin On our system.

We have to set a safe value fENV{PATH} because this value can be changed by the user in their
environment before running the Perl script. If the user gets PATHtO /home/pjf/bin then we'd
run the/homelpijfibin/finger command rather than thesr/bin/finger command.

For safety’s sake, taint checking in Perl always assumegttbaaTHenvironment variable has been
tampered with by the user.

If you've been calling your Perl program from the command line with perl program pl you'll be
told that you're turning taint checking on too late, even if you've put it in your shebang line.

This is because Perl wants to know that you want to use taint checking as soon as possible. The
way to fix this is to include the -1 option in your call, so: perl -T program pl .

@SETUID scripts automatically run with taint checking turned on for your own protection.

@Under Perl 5.8.0 and above, there is also the -t switch, which causes tainted operations to
generate warnings instead of errors. This is no substitute for real taint checking, but can be
useful if you're trying to lock down legacy code and see which areas require attention.

Exercise

1. Implement taint checking on your answer to the previogs@se.

Perl Training Australia (http://perltraining.com.au/) 151

Chapter 18. System interaction

2. Ask the user for a filename, open the file and write a shorsagesto it. Turn on taint checking
and try running your script. What sort of regular expressiould you use to check for valid
filenames? (Answeexercises/answers/taintfile.pl)

Safe.pm

For greater security when using unknown (and possibly k)stbde, or for writing code which
adheres to strict standards about what it’s allowed to dwetls theSafemodule. This module

allows the creation of compartments in which Perl code caevbduated. These compartments allow
you to define explicitly what the code run within them may araymot do. For example, you may
deny access to the file system so that the code may not readtetaviiles. Or you may only permit
the code to use certain operators such that it may add andstibtit not divide, for example.
Attempts by the code to perform forbidden tasks result inrapiation error at compile time and a
fatal error at run time.

Note that it is always a good idea to audit code that you redeam a third party before executing it
on your machine.

Learning how to use the Safe module is a course in itself. For more information on this

module read perldoc Safe and pages 576-581 (489-493 2nd Ed) of the Camel book.

Chapter summary

152

- Thesystem() function can be used to perform system commasidss set if any error occurs.

- The backtick operator can be used to perform a system comarahceturn the output. The()
quoting function/operator works similarly to backticks.

« The above methods may not result in platform independerg.cod

- Data input by users or from elsewhere on the system can caassty problems. Perl'st flag
can be used to check for such "tainted" data

- Tainted data can only be untainted by referencing a sulgsfiim a pattern match.

Perl Training Australia (http://perltraining.com.au/)

Chapter 19. Practical exercises

About these exercises

These exercises are designed to complement the existimgecexercises and provide a broader
coverage of Perl. They are designed to range in level of diffiand may require skills we haven't
yet covered in the course. When you find that you don’t havé&tiogvledge to solve a problem, feel
free to move onto another puzzle instead.

Although these exercises should be fun to work on, pleask first on the course exercises you've
been assigned. The course exercises are designed to eyloancaderstanding of the material just
covered, and are essential in consolidating your undetstgrof Perl.

Palindromes

A palindrome is an integer or string which reads the same foottards and backwards. For
example 1441, and "Hannah". If we allow multi-word palinches we can also have sentences such
as "Able was | ere | saw Elba". Each of these are "true" patinus as (ignoring case) each string
reads exactly the same forwards as it does backwards.

If we extend the definition of a palindrome such that any seqe®f word characters is considered,
regardless of spacing and punctuation we can get a much veidge. For example each of the
following are palindromes: "race car", "Madam, in Eden I'dan", "Was it a cat | saw?", "Did |

do, O God, did | as | said I'd do? Good, | did."

1. Write a program which detects whether a string is a trueg@adme irrespective of case.

2. Extend your program to detect whether a string is a padimérby ignoring capitalization and
spacing. If we haven’t covered regular expressions yetygay find thesplit andjoin
functions handy.

3. Now allow for punctuation. You'll probably want to use @uéar expression for this task.

4. In assembler the solution to this problem would be to watk pointers along the string starting
at opposite ends and comparing character by charactertiRion would be handled by
incrementing the pointers at each point until they reachedext word character. Comparison
would stop with failure if two characters were unequal, ariithwuccess if the pointers reached
the same location or passed each other. This is called artdte pomparison"”.

Using eithersubstr or using split then walking over an array; write a programathi
determines if a string is a palindrome using in-place corsparonly.

Hangman

The game of hangman is a common pastime for young childremg@ime master picks a word and
the player has to guess the word by choosing letters that maythat word. If the letter is correct
the game master writes the letter into all the correct pmsitof the word. If the guess is wrong,
more of the hanged man is drawn. In this exercise we won't dn@tangman, but we’ll keep track
of the guesses remaining and the letters guessed.

Perl Training Australia (http://perltraining.com.au/) 153

Chapter 19. Practical exercises

154

1. Write a program which reads in the contents of a text filerandomly picks a word. You can
read a file passed in on the command line wilhe(<>)

Make sure that words of less than 4 letters and those conggninctuation are not chosen. If
you're working on a Unix-like machine you may want to pick ardiérom the
Jusr/share/dict/words file.

2. Extend your program to allow the user to play hangman. Astart of each turn, report to the
user the number of letters the selected word has, whichddtiey have already guessed (and
their locations if successful) and the number of guesseaireng. For example your output
may look like:

e _e _ _ _ _t (8 letters). Guesses (e, t, s).
7 guesses remaining.

3. Accept options on the command line for the maximum numbguesses, and the minimum
and maximum word length. You may firgbtopt::Std ~ useful for this.

4. If the player wins, ask them for their name and add theirenea high-score table. This table
should list the players name, the length of the word and timebau of wrong guesses they
made. Write the information out to a file so that you can digplathe high scores (sorted by
word length and wrong guesses) at the successful completieach game. You may find
Storable to be helpful.

An example high score table might look like:

Name Word length Mistakes
Paul Fenwick 10 3
Jacinta Richardson 10 5
Jacinta Richardson 9 2

Paul Fenwick 8 4

Perl Training Australia (http://perltraining.com.au/)

Chapter 20. Conclusion

Where to now?

To further extend your knowledge of Perl, you may like to:

- Work through the material included in the appendices oftibisk.
- Visit the websites in our "Further Reading" section (below)

 Follow some of the URLSs given throughout these course netgecially the ones marked
"Readme".

- Install Perl on your home or work computer.
- Practice using Perl from day to day.
- Join a Perl user group such as Perl Mongers (http://www.m@f).o
- Join an on-line Perl community such as PerIMonks (http:t#uaperimonks.org/).
- Extend your knowledge with further Perl Training Austrat@urses such as:
- Web Development with Perl
- Database Programming with Perl
. Perl Security
. Object Oriented Perl

Information about these courses can be found on Perl Tgairstralia’s website
(http://www.perltraining.com.au/).

Further reading

Books

- Larry Wall, Tom Christiansen and Jon OrwaRtpgramming Per(3rd Ed), O’'Reilly and
Associates, 2000. ISBN 0-596-00027-8

- Tom Christiansen and Nathan Torkingtdine Perl CookbookO’Reilly and Associates, 1998.
ISBN 1-56592-243-3.

- Jeffrey Friedl Mastering Regular Expression®’Reilly and Associates, 1997. ISBN
1-56592-257-3.

- Joseph N. Hall and Randal L. SchwakEfective Perl ProgrammingAddison-Wesley, 1997.
ISBN 0-20141-975-0.

- Damian ConwayPerl Best PracticesO’Reilly and Associates, 2005. ISBN 0-59600-173-8.

Perl Training Australia (http://perltraining.com.au/) 155

Chapter 20. Conclusion

Online

« The Australian Perl Portal (http://www.perl.net.au/)

- Perl Mongers Perl user groups (http://www.pm.org/)

- PerlMonks online community (http://www.perlmonks.org/)
« Comprehensive Perl Archive Network (http://search.cpay).
« The Perl homepage (http://www.perl.com/)

« The Perl Directory (http://www.perl.org/)

- Perl Quality Assurance Projects (http://qa.perl.org/)

156 Perl Training Australia (http://perltraining.com.au/)

Appendix A. Advanced Perl variables

In this chapter...

In this chapter we will explore Perl’s variable types adittirther. We'll look at hash slices and cool
ways to assign values into and from arrays and hashes. Buwéitslook at how we can make
quoting a little nicer.

Quoting with qq() and q()

Using double quotes or single quotes when quoting somegstdan result in lots of character
escaping. Which quotes are best for quoting the followinggeaph?

Jamie and Peter's mother couldn't drive them to the show.
"How are we going to get there?" Jamie asked.

"We could ride our bikes", Peter suggested.

But Peter's bike had a flat tyre.

If we use double quotes it comes out looking like this:

print "Jamie and Peter's mother couldn't drive them to the sh ow.
\"How are we going to get there?\" Jamie asked.

\"We could ride our bikes\", Peter suggested.

But Peter's bike had a flat tyre.";

but that's just ugly. Single quotes aren’t much better:

print "Jamie and Peter\’'s mother couldn\'t drive them to the show.
"How are we going to get there?" Jamie asked.

"We could ride our bikes", Peter suggested.

But Peter\'s bike had a flat tyre.’

In order to encourage beautiful code that you can be prougesf,allows you to pick your own
guote operators, when you need to, by providing you withandqq() . q() represents single quotes
andqq() represents double quotes. Note that the same rules appwpébrof these quoting styles as
for their more common equivalentgj() allows variable interpolation and control character
expansion (such as the newline character) whejgadoes not. These are often called "pick your
own quotes" or "roll your own quotes".

Using pick your your own quotes, quoting the above paragbegmomes easy:

qq(Jamie and Peter’s mother couldn’t drive them to the show.
"How are we going to get there?" Jamie asked.

"We could ride our bikes", Peter suggested.

But Peter's bike had a flat tyre.);

You may use any non-whitespace, non-alphanumeric cha@igour delimiters. Pick one not
likely to appear in your string. Note that things that lodtelthey should match up do. $anatches
), { matcheg and finally< matches-. There are some illustrated below.

print g/Jamie said "Using slashes as quoting delimiters is v ery common."/;
print g(Jamie said "You should always watch your quotes!");

print gq!Jamie said "$these are Paul's favourite quotes”. (He was wrong).\n!;
print gg[Jamie said "Perl programs ought to start with #!"\n 1;

print gg#Jamie said "My favourite regexp is '/[jamie] *[i;"\n#;

Perl Training Australia (http://perltraining.com.au/) 157

Appendix A. Advanced Perl variables

If you use matching delimiters around your quoted text Perl will allow you to include those
delimiters in your quoted text if they are also paired.

print qq(There was a (large) dog in the yard\n); # This will wo rk

If the delimiters within your quoted text are not paired, this will result in errors.

print qg< 1 + 4 < 10 >; # This will not work

The problem with the last example is that Perl assumes that the closing > is paired with the
second < and waits to see a later > to close the string.

A different way of quoting strings areeRedocuments. These can sometimes be confusing for the
reader, and usually pick your own quotes will be clearer. BleecHEREDocuments here for the sake
of completeness, and because they are still very commorlér obde. If you've done a lot of shell
programming you may recognise this constraeRedocuments allow you to quote text up to a
certain marking string. For example:

print << "END";

| can print any text | want to put here without

fear of "weird" things happening to it. All
punctuation is fine, unlike roll-your-own quotes,
where you have to pick some kind of punctuation to
delimit it. Here, we just have to make sure that
the word, up there (next to print) does not appear
in this text, on a line by itself and unquoted.
Otherwise we terminate our text.

END

The quoting style used in HERE documents is whatever youegghetterminating word with next to
the print statement (in this case double quotes). Usingléaiumntes results in variable interpolation,
whereas using single quotes results in no variable intetjool.

Exercises

1. Experiment with using() andqq() to print the following string:

V <+c&br$la@ # *"~{ [0] " +#_@al$rbect SV
you'll find this string in the file exercises/quoteme.pl

You'll find answers to the above ixercises/answers/quoted.pl

Scalars in assignment

158

You may find yourself wishing to declare and initialise a nemdf variables at once:

my $start = 0O;
my $end = 100;
my $mid = 50;

but you don’t want to take up three lines to do it in. Perl lats ylo the following:

my ($start, $end, $mid) = (0, 100, 50);

Perl Training Australia (http://perltraining.com.au/)

Appendix A. Advanced Perl variables

which says create the variabkasart , $end andsmid and assign them values from the list on the
right dependent on their list position. You'll see this kiofcthing all the time. If the list on the right
is longer than the list on the left, the extra values are igdolf the list on the left is longer than the
list on the right, the extra variables get no value.

my ($a, $b, $c) = (1, 2, 3, 4, 5); # $a =1, $b = 2, $c = 3.

values 4 and 5 are ignored.
my ($d, $e, $f, $g) = (1, 3, 5); # $d = 1, $e = 3, $f = 5.

$g gets no value.

If the variables are already declared withelsewhere, you can still use the above method to assign
to them.

($a, $b, $c) = (1, 4, $d); # $a =1, $b = 4, $c = %d.

In fact, this gives us a very simple way to swap the values ofwtariables without needing a
temporary variable:

($a, $b) = ($b, $a);

C You'll notice above that in all the examples we’ve grouped our lists within parentheses. These
parentheses are required.

Arrays in assignment

Just as we could assign a list of values to a list of scalargameassign elements from arrays to a list
of scalars as well. Once again if we provide more values onigfit than we provide variables on

the left, the extra ones are ignored. If we provide more wegmon the left than values on the right,
the extra variables are given no value.

my ($fruitl, $fruit2, $fruit3) = @fruits; # assign from arra y
my ($numberl, $number2) = @magic_numbers[-2, -1]; # assign from array slice
my @short = (1,2);

my ($a, $b, $c) = @short; # $c gets no value

($a, $b) = @random_scalars; # changes $a and $b.

Sometimes we would like to make sure that we get enough valums list to initialise all of our
variables. We can do this by supplementing our list with oeable defaults:

my @short = (1, 2);
my ($a, $b, $c, $d, $e, $f) = (@short, 0, 0, O, 0, 0, 0);

this way, even if@short is completely empty we know that our variables will all betialised.

So what happens if you put an array on the left hand side? Wallend up with an array copy.

@fruits; # copies @fruits into @other_fr uits
@fruits[0..2]; # copies apples, oranges and guavas into
@small_fruits.

my @other_fruits
my @small_fruits

What happens if you put two arrays on the left and two on thiet?idpo you end up with two array
copies? Can you use this to swap the contents of two arrayf?tunately no.

Perl Training Australia (http://perltraining.com.au/) 159

Appendix A. Advanced Perl variables

(@a, @bh) = (@c, @d); # Does @a = @c, @b = @d ? No.
Instead:
@a = @c and @d joined together
@b is made empty

(@a, @b) = (@b, @a); # Are array contents swapped? No.
Instead:

@a becomes @b and @a joined together
@b is made empty.

When two arrays are put together into a list, they are "flatémand joined together. This is great if
you wish to join two arrays together:

my @bigger = (@smalll, @small2, @small3); # join 3 arrays tog ether

but a bit awkward if you were hoping to swap their contentsg&btwo array copies or to swap the
contents of two arrays, you're going to have to do it the lormyw

Hash slices

160

Hash slices are used less frequently than array slices angsaally considered more confusing. To
take a hash slice we do the following:

Our hash

my %people = (
James => 30,
Ralph => 5,
John => 23,
Jane => 34,
Maria => 26,
Bettie => 29

);

An array (some of the people in %people)
my @friends = qw/Bettie John Ralph/;

Taking a hash slice on the %people hash using the array @frie nds to

give us the keys.

my @ages = @people{@friends}; # @ages contains: 29, 23, 5

my @ages_b = @people{qw/Bettie John Ralph/;}; # essentiall y the same as above

You'll notice that when we did the hash slice we usedamymbol out the front rather tharessign.
This isn't a typographical error. The reason we us@aign is because we're expect a list (of values)
out. Perl knows that we're looking at the hash cabg@ople rather than any array calle@lpeople
because we've used curly braces rather than square brackets

We can also assign values to a hash slice in the same way weasign &alues to a list. This allows
us to use hash slices when we wish to see if a number of thirigisiean array without traversing
the array each time. This is important because if the arrlydge, searching through all of it
multiple times may be infeasible.

The array of things we'd like to test against
my @colours = gw/red green yellow orange/;

A list of things that might be in @colours or not
my @find = qw/red blue green black/;

Perl Training Australia (http://perltraining.com.au/)

Appendix A. Advanced Perl variables

my %colours; # hashes and arrays can have the same names.
hash slices use curly braces {} and
array slices use square brackets []

@colours{@colours} = (); # set all values in %colours from th e keys in
@colours to have the undefined value (but exist in
the hash).

We now look for @find in %colours rather than
@colours. This is much faster.
foreach my $colour (@find) {
if(exists($colours{$colour})) {

print "true ";
}
else {
print "false
}
}
Exercise

We can use the fact that hash keys are unique to remove digglitam an array.

1. Taking the list:

gw/one one one two three three three four four five five five/

use a hash slice to print out only the unique values. (Donttyvabout the order they come out
in).

2. Use a hash and a foreach loop to print out the unique vafués above list in first-seen order
(ie: one two three four five).

Answers for the above questions can be founekéncises/answers/duplicates.pl

Hashes in assignment

Assignment from hashes is a little different to assignmembfarrays. If you try the following:

my ($monthl, $month2) = %monthdays;

you won't get the names of two months. When a hash is treatadistsit flattens down into a list of
key-value pairs. This means thatonth1 will certainly be the name of a month, bihonth2 will be
the number of days imonth1 .

To get all they keys of a hash we use t#tags function. If we wanted two of these we can do the
following:

my ($monthl, $month2) = keys %monthdays;

To get two values from this hash (which would match the keyseveulled out above) we use the
values function.

my ($daysl, $days2) = values %monthdays;

Perl Training Australia (http://perltraining.com.au/) 161

Appendix A. Advanced Perl variables

As thevalues function only returns the values inside the hash and we dazasily determine from
a value which key it had, using thelues function loses information. Usually the values in a hash
are accessed through their keys:

my $daysl = $monthdays{January};
my $days2 = $monthdays{February},
my ($daysl, $days2) = @monthdays{gw/January February/}; # a shorter way

if we want a few

We can use the fact that hashes flatten into lists when usést oohtext to join hashes together.

my %bigger = (%smaller, %smallest);

Note, however, that because each hash key must be uniqubithatay result in some data loss.
When two hash keys clash the earlier one is over written wighldater one. In the case above, any
keys in%smaller that also appear isbsmallest will get the values iresmallest . This is great news
if you have a hash of defaults you want to use if any values éssing.

my %defaults = (
name => "John Doe",
address => "No fixed abode",
age => "young",

):

my %input = (
name => "Paul Fenwick",
address => "c/o Perl Training Australia”,

):

%input = (%defaults, %input); # join two hashes, replacing d efaults
with provided values
age was missing; gets set to "young"

To copy a hash you can just assign its value to the copy haskevs, attempts to perform a double
copy in one step or to swap the values of two hashes withouhpdeary hash result in the same
issues as with arrays due to list flattening.

Chapter summary

162

« Usingq() andqq() allows the programmer to chose quoting characters otharthad' .

- Perl allows paired delimiters to also appear in the quotedtben usingy() andqq() so long as
those characters are also paired.

- Perl allows programmers to initialise scalar variablesfists and to provide less or more values
than required if desired.

- You can swap the value of two scalar variables by assignieig ¥alues to each other in a list
assignment.

- Arrays can be copied by assigning one array to another.
- Arrays flatten to one big list when combined in list context.
- Hash slices allow us to access several values from a hasleistep.

- Hashes can be copied by assigning one hash to another.

Perl Training Australia (http://perltraining.com.au/)

Appendix B. Named parameter passing and
default arguments

In this chapter...

In this chapter we look at how we can improve our subroutiyesding named parameter passing
and default arguments. This is commonly used in object tegeRerl programming but is of great
use whenever a subroutine needs to take many argumentsearitig of use to allow more than one
argument to be optional.

Named parameter passing

As you will have seen, Perl expects to receive scalar valsissilaroutine arguments. This doesn’t
mean that you can’t pass in an array or hash, it just meanghbaitray or hash will be flattened into
a list of scalars. We can reconstruct that list of scalasamtarray or hash so long as it was the final
argument passed into the subroutine.

Most programming languages, including Perl, pass theurraentsby position So when a function
is called like this:

interests("Paul","Perl","Buffy");

theinterests() function gets its arguments in the same order in which thegwassed (in this
case@_is ("Paul","Perl","Buffy")). For functions which take a few arguments, positional
parameter passing is succinct and effective.

Positional parameter passing is not without its faultsytito If you wish to have optional
arguments, they can only exist in the end position(s). If ve@tto take extra arguments, they need
to be placed at the end, or we need to change every call to ticéidua in question, or perhaps write a
new function which appropriately rearranges the argumamdsthen calls the original. That's not
particularly elegant. As such, positional passing resalgssubroutine that has a very rigid interface,
it's not possible for us to change it easily. Furthermorgyéfneed to pass in a long list of arguments,
it's very easy for a programmer to get the ordering wrong.

Named parameter passing takes an entirely different apprd¥ith named parameters, order does
not matter at all. Instead, each parameter is given a nament@ists() function above would be
called thus:

interests(name => "Paul", language => "Perl", favourite_s how => "Buffy");

That's a lot more keystrokes, but we gain a lot in return.iitisnediately obvious to the reader the
purpose of each parameter, and the programmer doesn’toeechémber the order in which
parameters should be passed. Better yet, it's both fleximleeapandable. We can let any parameter
be optional, not just the last ones that we pass, and we canexd@arameters at any time without
the need to change existing code.

The difference between positional and named parametdratitite named parameters are read into
a hash. Arguments can then be fetched from that hash by name.

interests(name => "Paul", language => "Perl", favourite_s how => "Buffy");

Perl Training Australia (http://perltraining.com.au/) 163

Appendix B. Named parameter passing and default arguments

sub interests {
my (%args) = @_;

my $name = $args{name} || "Bob the Builder";
my $language = $argsflanguage} || "none that we know";
my $favourite_show = $args{favourite_show} || "the ABC New s";

print "${name}'s primary language is $language.
"$name spends their free time watching $favourite_show\n" ;

Calling a subroutine or method with named parameters does not mean we're passing in an
anonymous hash. We're passing in a list of name => value pairs. If we wanted to pass in an
anonymous hash we’d enclose the name-value pairs in curly braces { and receive a hash
reference as one of our arguments in the subroutine.

Some modules handle arguments this way, such as the ccl module, although cGI also accepts
name => value pairsin many cases.

It is important to notice the distinction here.

Default arguments

Using named parameters, it's very easy for us to use defayliserging our hash of arguments with
our hash of arguments, like this:

my %defaults = (pager => "/usr/bin/less", editor => "/usr/b infvim");

sub set_editing_tools {
my (%args) = @_;

Here we join our arguments with our defaults. Since when
building a hash it's only the last occurrence of a key that

matters, our arguments will override our defaults.

%args = (%defaults, %args);

print out the pager:
print "The new text pager is: $args{pagerj\n”;

print out the editor:
print "The new text editor is: $args{editorj\n";

Subroutine declaration and prototypes

164

Many programming languages allow or require you to predegtaur subroutines/functions. These
declarations, also called prototypes, tell the compileattipes of arguments the subroutine is
expecting. Should the subroutine then be passed too fewn&my or the wrong kind of arguments; a
compile-time error is generated and the program does not run

While prototypes in Perl do exist, they are not the same aalibge mentioned function
declarations. Prototypes allow developers to write sutimes which mimic Perl’s built-in functions,

Perl Training Australia (http://perltraining.com.au/)

Appendix B. Named parameter passing and default arguments
but they don’t work the same was as they do in other langu&glksn used with regular subroutines,
the consequences can be surprising and difficult to unadetsta

It is recommended that you avoid using Perl’s subroutinetopypes.

Should you have a requirement to validate your subroutine parameters the params::validate

module, available from CPAN, will do all that you want and more.

Chapter summary

- Parameters in Perl are usually passed "by position".

- Positional parameter passing makes having independenhaparguments or extra arguments
difficult.

- Using positional parameter passing requires the progrartomemember or look up the
parameter order when dealing with subroutines that take/rmeguments.

- Named parameter passing makes independent optional angsiarel extra arguments easy.

- Named parameter passing allows the programmer to list thenaents in an easy to understand
and change manner.

- Using named parameter passing, it becomes very easy te cefatult values for parameters.

Perl Training Australia (http://perltraining.com.au/) 165

Appendix B. Named parameter passing and default arguments

166 Perl Training Australia (http://perltraining.com.au/)

Appendix C. Complex data structures

References are most often used to create complex datasasicBince references are scalars, they
can be used as values in both hashes and arrays. This makssililp to create both deep and
complex multi-dimensional data structures. We'll covemnsoof these in further detail in this chapter.

Complex data structures are covered in detail in chapter 9 (chapter 4, 2nd Ed) of the Camel
book.

Arrays of arrays

The simplest kind of nested data structure is the two-dino@asarray or matrix. It's easy to
understand, use and expand.

Creating and accessing a two-dimensional array
To create a two dimensional array, use anonymous arrayerefes:
my @Ao0A = (

[qw(apple orange pear banana)],

[gw(mouse rat hamster gerbil rabbit)],

[gw(camel llama panther sheep)],

):

print $A0A[1]->[3]; # prints "gerbil"

The arrow is optional between brackets or braces so the above access could equally well have
been written:

print. $A0A[1][3];

Adding to your two-dimensional array

There are several ways you can add things to your two-dirnaakarray. These also apply to three
and four and five and n-dimensional arrays. You can push amyamaus array into your array:

push @AO0A, [gw/lions tigers bears/];

or assign it manually:

$A0A[5] = [qw/fish chips vinegar salt pepper-pop/];

You can also add items into your arrays manually:

$A0A[0][5] = "mango";

167
Perl Training Australia (http://perltraining.com.au/)

Appendix C. Complex data structures

or by pushing:
push @{$A0A[0]}, "grapefruit";

You're probably wondering about why we needed the curly &san our last example. This is
because we want to tell Perl that we're looking at the elera@sr[o] and asking it to deference that
into an array. When we writ@$AoA[0] Perl interprets that a@{$Ao0A}[0] which assumes thafoA

is a reference to an array we're trying to take an array slici. dt’s usually a good idea to use curly
braces around the element you're dereferencing to savgawefrom this confusion.

Printing out your two-dimensional array
Printing out a single element from your two-dimensionaagiis easy:

print $A0A[1][2]; # prints "hamster"

however, if you wish to print our your data structure, you’tprst do this:
print. @AO0A,

as what you'll get is something like this:

ARRAY (0x80f606C)ARRAY (0x810019¢)ARRAY (0x81001f0)

which are stringified references. Instead you'll have t@tee loop to print out your array:
foreach my $list (@A0A) {

print "@$list";
}

Hashes of arrays

Arrays of arrays have their uses, but require you to remethigerow number for each separate list.
Hashes of arrays allow you to associate information withhdiat so that you can look up each array
from a key.

Creating and accessing a hash of arrays
To create a hash of arrays create a hash whose keys are anmgmays:
my %HoA = (

fruits => [qw(apple orange pear banana)],

rodents => [gw(mouse rat hamster gerbil rabbit)],

books => [qw(camel llama panther sheep)],

)

print $HoA{rodents}[3]; # prints “"gerbil"

168 Perl Training Australia (http://perltraining.com.au/)

Appendix C. Complex data structures

Adding to your hash of arrays

Adding things to your hash of arrays is easy. To add a new st/gssign an anonymous array to
your hash:

$HoA{oh_my} = [gw/lions tigers bears/];

To add a single element to an array, either add it in place sh fiwon the end:

$HoA({fruits}[4] = "grapefruit”;
push @{$HoA{fruits}}, "mango";

Once again you'll notice that we needed an extra set of cudygds to make it clear to Perl that we
wantedsHoA{fruits} dereferenced to an array.

Printing out your hash of arrays

Printing out a single element from your hash of arrays is easy
print $HoA{fruits}[2]; # prints "pear”

Printing out all the element once again requires a loop:
foreach my $key (keys %HoA) {

print "$key => @{$HoA{$Skey}}\n";
}

Arrays of hashes

Arrays of hashes are particularly common when you have nuofterdered records that you wish
to process sequentially, and each record consists of Keye-pairs.

Creating and accessing an array of hashes
To create an array of hashes create an array whose valuascamgaous hashes:
my @AoH = (

{

name => "John",
age => 31,

name => "Mary",
age => 23,

name => "Paul",
age => 27,
)i

print $AoH[2]{name}; # prints "Paul"

Perl Training Australia (http://perltraining.com.au/) 169

Appendix C. Complex data structures

Adding to your array of hashes

To add a new hash to your array, add it manually or push it oeite To add an element to every
hash use a loop:

$A0H[3] = { # adding a new hash manually
name => "Jacinta",
age => 26,
h
push @AoH, { # pushing a new hash on to the end
name => "Judy",
age => 47
h
$AoH[0){favourite_colour} = "blue"; # adding an element to one hash
foreach my $hashref (@AoH) { # adding an element to every hash

$hashref->{language} = "Perl";

}

Printing out your array of hashes

To print a array of hashes we need two loops. One to loop owyatement of the array and a
second to loop over the keys in the hash:

foreach my $hashref (@AoH) {
foreach $key (keys %S$hashref) {
print "$key => $hashref->{$key}\n";
}

Hashes of hashes

170

Hashes of hashes are an extremely common sight in Perl pnsgkashes of hashes allow you to
have a number of records indexed by name, and for each rezoohtain sub-records. As hash
lookups are very fast, accessing data from the structudsasvery fast.

Creating and accessing a hash of hashes
To create a hash of hashes, assign anonymous hashes assiouahes:

my %HoH = (
Jacinta => {
age => 26,
favourite_colour => "blue",
sport => "swimming",
language => "Perl",

Paul => {
age => 27,
favourite_colour => "green",
sport => "cycling",
language => "Perl",

Perl Training Australia (http://perltraining.com.au/)

Appendix C. Complex data structures

Ralph => {
age => 7,
favourite_colour=> "yellow",
sport => "little athletics",
language => "English"
h
)i
print $HoH{Ralph}sport}; # prints "little athletics"

Adding to your hash of hashes
$HoH{Ralph}{favourite_food} = "Tomato sauce"; # adding to Ralph’s hash

$HoH{Tina} = { # adding a new person hash
age => 19,
favourite_colour => "black",
sport => "tai chi",

Printing out your hash of hashes

Once again, to print out a hash of hashes we’ll need two laapesfor each key of the primary hash
and the second for each key of the inner hash.

foreach my $person (keys %HoH) {
print "We know this about $person:\n“;
foreach $key (keys %{ $HoH{$person} }) {
print "${person}'s $key is $HoH{$person}{$key}n";
}

print "\n";

More complex structures

Armed with an understanding of the nested data structurdg\jest covered you should be able to
create the best data structure for what you need. Perhapsegalia hash of hashes but where some
of your values are arrays. This should pose no problemsaPsiyou want an array of hashes of
arrays? This too should be easy.

Perl Training Australia (http://perltraining.com.au/) 171

Appendix C. Complex data structures

172 Perl Training Australia (http://perltraining.com.au/)

Appendix D. More functions

The grep() function

Thegrep() function is used to search a list for elements which matchtaiceregexp pattern. It
takes two arguments - a pattern and a list - and returns & lise@®lements which match the pattern.

The grep() function is on page 730 (page 178, 2nd Ed) of your Camel book.

trivially check for valid email addresses
my @valid_email_addresses = grep N@/, @email_addresses;

Thegrep() function temporarily assigns each element of the list tthen performs matches on it.

There are many more complicated uses for the grep functmminBtance, instead of a pattern you
can supply an entire block which is to be used to process #megits of the list.

my @long_words = grep { (length($_) > 8); } @words;

grep() doesn’trequire a comma between its arguments if you argasilock as the first argument,
but does require one if you're just using an expression. Hdeek at the documentation for this
function to see how this is described.

Exercises

1. Usegrep() to return a list of elements which contain numbers (Answer:
exercises/answers/grepnumber.pl)

2. Usegrep() to return a list of elements which are
a. keys to a hash (Answesdxercises/answers/grepkeys.pl)

b. readable files (Answeexercises/answers/grepfiles.pl)

The map() function

Themap() function can be used to perform an action on each member sif arld return the results
as a list.

my @lowercase = map Ic, @words;
my @doubled = map { $_ * 2 } @numbers;

map() is often a quicker way to achieve what would otherwise be dynigerating through the list
with foreach .

foreach (@words) {
push (@lowercase, Ic($_);

}

Perl Training Australia (http://perltraining.com.au/) 173

Appendix D. More functions

Like grep() , it doesn’t require a comma between its arguments if you sirggla block as the first
argument, but does require one if you're just using an exwas

Exercises

1. Create an array of numbers. Us&p() to calculate the square of each number. Print out the
results.

174 Perl Training Australia (http://perltraining.com.au/)

Appendix E. Unix cheat sheet

A brief run-down for those whose Unix skills are rusty:

Table E-1. Simple Unix commands

/Action Command
Change to home directory cd

Change tali rectory cd directory
Change to directory above current directory [cd ..

Show current directory pwd

Directory listing Is

\Wide directory listing, showing hidden files |s -al

Showing file permissions Is -al

Making a file executable chmod +xfil enane
Printing a long file a screenful at a time morefil enane Or lessfil ename
Getting help forcomand man conmand

Perl Training Australia (http://perltraining.com.au/)

175

Appendix E. Unix cheat sheet

176 Perl Training Australia (http://perltraining.com.au/)

Appendix F. Editor cheat sheet

This summary is laid out as follows:

Table F-1. Layout of editor cheat sheets

Running Recommended command line for starting it.

Using Really basic howto. This is not even an attempt at
a detailed howto.

Exiting How to quit.

Gotchas Oddities to watch for.

Help How to get help.

vi (or vim)
Running

% vi filename
or

% vim filename (where available)

Using

- i to enter insert mode, then type text, pr&S&C to leave insert mode.
- x to delete character below cursor.

«+ dd to delete the current line

« Cursor keys should move the cursor whilet in insert mode.

- Ifnot, try hjkl , h =left,1 =right,j = down,k = up.

« /,then a string, theENTER to search for text.

« :w thenENTER to save.

Exiting

« Pres€ESCif necessary to leave insert mode.
. :q thenENTER to exit.

:q¢ ENTER to exit without saving.

- :wq to exit with save.

Perl Training Australia (http://perltraining.com.au/) 177

Appendix F. Editor cheat sheet

Gotchas

vi has an insert mode and a command mode. Text entry only workseént mode, and cursor motion
only works in command mode. If you get confused about whatemad are in, pressingSC twice
is guaranteed to get you back to command mode (from where ngss pto insert text, etc).

Help

:help ENTER might work. If not, then see the manpage.

nano (pico clone)

Running

% nano -w filename

Using

« Cursor keys should work to move the cursor.
- Type to insert text under the cursor.

« The menu bar hasx commands listed. This means hold do@RRL and press the letter
involved, egCTRL -W to search for text.

« CTRL-O to save.

Exiting

Follow the menu batr, if you are in the midst of a command. OF&L -X from the main menu.

Gotchas

Line wraps are automatically inserted unless the -w flagvsrgon the command line. This often
causes problems when strings are wrapped in the middle efaod similar.

Help

CTRL -G from the main menu, or just read the menu bar.

178 Perl Training Australia (http://perltraining.com.au/)

Appendix G. ASCII Pronunciation Guide

Table G-1. ASCII Pronunciation Guide

Character Pronunciation

it hash, pound, sharp, number
! bang, exclamation

* star, asterisk

$ dollar

@ at

% percent, percentage sign

& ampersand

double-quote
single-quote, tick, forward tick
() open/close parentheses, round brackets, bananas

less than

greater than

dash, hyphen

dot

comma

slash, forward-slash
backslash, slosh

colon

semi-colon

= equals

? question-mark

n caret (pron. carrot), hat
underscore

[] open/close bracket, square bracket

() open/close curly brackets, brace

| pipe, vertical bar, bar
~ tilde, wiggle, squiggle
backtick

Perl Training Australia (http://perltraining.com.au/) 179

Appendix G. ASCII Pronunciation Guide

180 Perl Training Australia (http://perltraining.com.au/)

Colophon

mJIXXLm. .MmIXXLm
JXXXXXXXXL. JXXLm. .MJIXXL JIXXXXXXXXL
{XXXXXXXXXXX. JXXXMXXXXmM mXXXXmXXXL XXXXXXXXXXX}

XXXXXXXXXXXXXL. {XXXXXXXXXE S 7XXXXXXXXXE L IXXXXXXXXOKK.
TXXXXXKXXXXAKKXXXXLL XXXXXX. KXXXXXTIXXKKXXXXKKXXXKXL
TXXXXXKXXXXKXKKXXX XXX MXXXXXXX. D:0.9,9.9.9.0.411),:0.9,.9.0.0.0.0.0.0.¢ ¢ ¢+ (N
D9.0.0.0.9.0.0.9.9.0.9.0.9.0.9.0.9.0.9.0.9.09.0.00.904 19.09.00.00.0000.00.00.0::: 0000 00E

XXKXXXXXXXKXKXXEXKXXXKKXXKXKXXXKX
IXKXXXXKXXXKXXKXKXXXKKXXXKXXKKXKF
XXATXXXKXXXXXXXKKXXXKXX XXX XXXF
XX LXXXEXXXXXXXXXXXXXKXXXKXXF?
KHXXXTXXKEXXXXKAXXXKK ©

TXXX {XXXXXXXX TXXXF

XX} {XXF {XXXXFXXX}

XX XXL7XXY 7XX}

XX XXL mXXF {XX

XX TXXXF XX
XX. JXXXX. 7X.
{XXL TXF7TXXX. {XX
XXX XXXm
FAVAVAVAVAN
.mIXXLm
.mJIXXL IXXXXXXXXL
MXXXXmMXXXL XXXXXXXX XXX}

TXXXXXXXXXE L IXXXX XXX XXXXXX.
XXXXXXTIXKXXXXXXXXXXXXXXL
XXXXXXX MK XXX XX XXX X XL

[00.0.9.0.0.0.0.0.0.0.0.09.00.0.9.0.9.0.9.000000¢
10,9.9.9,0,0,0.0.9.9,9,9,0,:0.0.9,0,9,9,0.0.9,.9,0,0,0,.0.9.0.8

XXXXXXXXXXKXX XX REIEEBBEX XX KX.

7 XXXXXXXXXXX XXX RBBIBLHX XX XKL
7XXXXXXXXKXXX XXX OBEBXFAXX
TXXXXX XXX KKXXXXXXXXXXEK XX

7XXXXXAXKXXXTXXXEXXXHX 7

TXXXF XXXXXXXX} XXX

IXXCIXXXXY TXX} {XX.

{XXF {XXF' JXX' XX}
XX} 7XXm XX XX

XX’ TXXXF XX
XF XXXXL XX
XX} XXXF7XF JIXX}
mXXX’ XXX
VAVAVAVAVAN
mJXXLm.
JXXXXXXXXL. JXXLm.
{IXXXXXXXXXXX. IXXXMXXXXm

XXXXXXXXXXXXXL. {XXXXXXXXF

TXXXXXKHXXXXXXXXXXL. XXXKXK.

N),0,:0,:0.0.0,0,0,0,.0.0.9.0,0.0,0.0.9.%1% 0@

D0.0.9.00.09.00.90.00.9.: 5 0000004
D,9.9,:9,9.9,0,0.9.0,.0.9,0,0.9,9,0.9.9,0,0.9.9,0.9,0.¢

[0,9,9,:9,.9.9.9,9,0,9,0.9.9.9,0,9,0.0.9.9,0,0,0.0.9.9,.0.0,0. HEIN).0.0.0.0.0,.0,.0,.0.00.0,.0,.0.0, .0 00,0 04 =
TXXXXXXXXXXXXXXXXXXXXXXXXKFAXK XXAT XXXKXXXX XXX X
TXXXXXXXXXXXXXXXXXXXTXXKF XX XX XXXEXX XXX XXX XXX XXXXXF?

7 XXXXXAXXXXXTXXXEXXXHX
TXXXF XXXXXXXX} XXX
IXXXIXXXXY XX} {XX.
{XXF {XXF' XX XX}

XX} 7XXm IXX' XX’

XX TXXXF XX
XF XXXXL XX
XX} XXXF7XF JXX}

mXXX’ XXX

FAYAYAYAYAN

The use of a camel image in association with Perl is a trademar

Associates, Inc. Used with permission.

KHXXXTXXKEXXXXXAXKXKX ¢
IXXX IXXXXXXXX TXXXF
XX} {XXF XXXXPXXX}

XXL 7TXX} 7XX}
XXL mXXF {XX

XX TXXXF XX

JXXXX. 7X.

{XXL 7XF7XXX. {XX
XXX XXXm

FAYAYAYAYAN

k of O'Reilly &

Thecamel code that makes up the cover art was written by Stephen B. JenkkasErudil). When
executed, it generates the images of four smaller camelsomgmsabove. A discussion of the camel
code in its native habitat can be found on PerIMonks
(http://www.perlmonks.org/index.pl?node=camel+cotre information about Stephen B.
Jenkins and his work can be found on his website (http://viaxmdil.com).

Perl Training Australia (http://perltraining.com.au/) 181

182 Perl Training Australia (http://perltraining.com.au/)

